
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Institut für Germanistik
Abteilung für Computerlinguistik

Michael Piotrowski
NLP-Supported Full-Text Retrieval

Master’s Thesis

CLUE

 1998 Michael Piotrowski

Summary

The amount of information available in electronic form is growing exponen-
tially, making it increasingly difficult to find the desired information. This is
especially true of the World Wide Web, which has no central administration
and thus no ordering scheme to help users find the information they need. Fur-
thermore, most of the information is narrative, i.e., in the form of unstructured
documents written in natural languages, as opposed to structured information
stored in databases.

Information retrieval is primarily concerned with the storage and retrieval of
unstructured information. Thus, along with the growth of the World Wide
Web, information retrieval systems gain importance since they are often the
only way to find the few documents actually relevant to a specific question in
the vast quantities of text available. Internet search engines like AltaVista or
Lycos are very popular and commercially successful.

Although information retrieval systems mainly deal with natural language, lin-
guistic methods are rarely used. Most systems only use stemming, i.e., the me-
chanical cutting off of inflectional and derivational suffixes to better match in-
dex terms to query terms. Since most research on information retrieval is done
for English, which has a relatively weak morphology, this is seldom regarded
as problematic. Some researchers even consider stemming as completely un-
necessary. There is, however, considerable evidence that stemming and more
linguistically motivated methods do have a positive impact on retrieval per-
formance for languages such as Dutch, German, Italian, or Slovene, which
are morphologically richer than English. Morphologic phenomena like com-
pounds and changes of the stem are still not handled by conventional stemmers.
As German, for example, makes extensive use of these morphologic processes
(consider compounds like Bundesverfassungsgericht, and changes of the stem
like in Häuser, the plural of Haus), the application of full morphologic analysis
to the information retrieval task intuitively seems to be promising.

This thesis sets out to determine the usefulness of morphologic analysis in in-
formation retrieval systems, particularly for the retrieval of German-language
documents. An experimental retrieval system called IRF/1 was developed as a
test bed. It is described in this thesis. IRF/1 is used to compare the retrieval
effectiveness of different text processing methods for a test collection of about
300 magazine articles. The evaluated methods are:

3

1. stemming (as a baseline),

2. base form reduction using morphologic analysis,

3. same as (2) but compounds are split into the base forms of their con-
stituents, and

4. same as (3) but the base forms of compounds are kept along with their
parts.

Using the standard information retrieval measures of recall and precision, the
comparison finds morphologic analysis to be generally more effective than
stemming. While morphologic base form reduction only provides relatively
little improvement over stemming, decomposition of compounds results in a
decisive increase in retrieval effectiveness for German.

It can be concluded that morphologic analysis with decomposition of com-
pounds is a very promising approach to improving information retrieval for
German and should be further investigated.

4

Zusammenfassung

Immer mehr Wissen ist in elektronischer Form verfügbar, wodurch es immer
schwieriger wird, die gewünschten Informationen zu finden. Diese Aussage
trifft besonders auf das World Wide Web (WWW) zu. Das WWW wird nicht
zentral verwaltet, weshalb es auch kein Ordnungsschema gibt, das es den Be-
nutzern erleichtern würde, die gewünschten Informationen zu finden. Dazu
kommt, daß das meiste Wissen in narrativer Form niedergelegt ist, d. h. in
Form unstrukturierter natürlichsprachlicher Texte, im Gegensatz zu struktu-
rierten Daten, die in Datenbanken gespeichert sind.

Information retrieval (IR) beschäftigt sich hauptsächlich mit der Speicherung
und dem Wiederauffinden unstrukturierter Informationen. Daher hat die Be-
deutung von IR-Systemen mit dem Wachstum des WWW stark zugenommen,
da sie häufig die einzige Möglichkeit sind, die wenigen für eine bestimmte
Frage tatsächlich relevanten Informationen zu finden. Internet-Suchmaschinen
wie AltaVista oder Lycos sind deshalb äußerst beliebt und kommerziell sehr
erfolgreich.

Obwohl IR-System vor allem mit natürlicher Sprache umgehen, werden lin-
guistische Methoden selten benutzt. Die meisten Systeme begnügen sich mit
Stemming, dem mechanischen Abschneiden von Endungen, um Anfragen und
im Index gespeicherte Wörter besser in Übereinstimmung bringen zu können.
Da der größte Teil der Forschung im Bereich des IR für das Englische betrieben
wird, das nur über eine relativ schwach ausgeprägte Morphologie verfügt, wird
dies selten als ein Problem betrachtet. Einige Forscher halten Stemming so-
gar für vollkommen überflüssig. Es gibt jedoch deutliche Hinweise dafür, daß
Stemming und linguistische Methoden positive Auswirkungen auf die Effek-
tivität der Suche für Sprachen wie z. B. Deutsch, Italienisch, Niederländisch
oder Slowenisch haben, die eine ausgeprägtere Morphologie als Englisch ha-
ben. Morphologische Phänomene wie Komposition und Stammänderungen
werden aber von konventionellen Stemmern nicht behandelt. Da z. B. im
Deutschen diese morphologischen Prozesse sehr häufig auftreten (man den-
ke an Komposita wie Bundesverfassungsgericht und Stammänderungen wie
in Haus – Häuser), erscheint der Einsatz von vollständiger morphologischer
Analyse auf linguistischer Grundlage für das IR intuitiv sehr attraktiv.

Diese Arbeit versucht, den Nutzen von morphologischer Analyse in IR-
Systemen zu bestimmen, insbesondere für die Suche nach deutschsprachigen

5

Texten. Zu diesem Zweck wurde ein experimentelles IR-System namens IRF/1
entwickelt, das in dieser Arbeit beschrieben wird. IRF/1 wird dann dazu ver-
wendet, die Sucheffektivität von verschiedenen Textanalysemethoden für eine
Sammlung von etwa 300 Zeitschriftenartikeln zu vergleichen. Die untersuch-
ten Methoden sind:

1. Stemming (als Vergleichsgrundlage)

2. Grundformreduktion mit Hilfe morphologischer Analyse

3. Wie (2), aber Komposita werden in die Grundformen ihrer Bestandteile
zerlegt

4. Wie (3), aber zusätzlich zu ihren Teilen wird die Grundform von Kom-
posita verwendet

Beim Vergleich der Methoden mit Hilfe der Standard-IR-Maße Recall und Pre-
cision wird festgestellt, daß die morphologische Analyse allgemein effektiver
ist als Stemming. Die morphologische Grundformreduktion ist zwar nur ge-
ringfügig besser als Stemming, dafür erhöht die Kompositazerlegung die Ef-
fektivität der Suche für das Deutsche ganz entscheidend.

Man kann also den Schluß ziehen, daß die morphologische Analyse mit Kom-
positazerlegung in der Tat ein sehr vielversprechender Ansatz zur Verbesse-
rung von deutschsprachigem IR ist, die weiter untersucht werden sollte.

6

Contents

1 Introduction 9

1.1 The Information Age . 9

1.2 Goals . 10

1.3 The CLUE Framework . 10

1.4 Overview . 11

2 Information Systems 13

2.1 Introduction . 13

2.2 Applications . 13

2.3 Information Retrieval . 14

2.3.1 Overview . 14

2.3.2 Implementation Issues 15

3 Information Retrieval and NLP 19

3.1 Morphology . 19

3.2 Lexicon . 20

3.3 Syntax and Semantics . 20

3.4 Conclusions . 22

4 Design and Implementation 25

4.1 Overview . 25

4.2 Design Decisions . 25

4.3 Preprocessing . 28

4.4 Automatic Language Identification 30

4.4.1 Overview . 30

4.4.2 Design and Implementation 30

7

4.4.3 Performance . 33

4.4.4 Possible Enhancements 34

4.5 Indexing . 34

4.5.1 Morphologic Analysis 34

4.5.2 Storage . 37

4.6 Retrieval . 43

5 Evaluation 51

5.1 Introduction . 51

5.2 Evaluation Criteria for IR Systems 52

5.3 Relevance . 53

5.4 Standard Effectiveness Measures 53

5.5 Test Collections . 55

5.5.1 Overview . 55

5.5.2 Reducing the Need for Human Relevance Judgments . 56

5.5.3 Conclusions . 58

5.6 Evaluation of IRF/1 . 58

5.6.1 Expected Behavior 58

5.6.2 Test Collection . 59

5.6.3 Measuring Procedures 60

5.6.4 Evaluation Results 63

6 Conclusions 65

8

1 Introduction

Knowledge is power—nam et ipsa scientia potestas est.
—Francis Bacon, Meditationes sacrae

1.1 The Information Age

Never before has it been possible to store and distribute the amounts of in-
formation computers and networks handle today. With their support it is also
possible to generate more information faster than ever, and deliver it almost
instantly anywhere in the world. While the production of material goods is de-
clining in Western countries, the production, dissemination, and processing of
information is rapidly gaining in importance: we are clearly on our way from
an industrial society to an information society.

Back in the 16th century, Francis Bacon, who is quoted above, had already rec-
ognized the importance of knowledge. In his times information was difficult to
find because information was scarce and only accessible to the privileged few.
Today, the World Wide Web (WWW) provides instant access to information for
a rapidly increasing number of people (there were an estimated 30–40 million
Internet users in 1997, with a growth rate of 1 million new users per month1)
and from hundreds of thousands of sources. AltaVista, the largest search engine
on the WWW, boasts to have indexed over 100 million documents. Neverthe-
less we face problems similar to those of Bacon’s contemporaries, although
for a different reason: there is too much information; we are overwhelmed
by information, most of which is irrelevant to our current information needs.
This situation, where it is impossible to find the relevant information because
there is too much information to evaluate, is often referred to as information
overload.
1 According to studies compiled by MSS Internet Services, available online at
http://www.4-mss.com/internet/htmls/statistics.html

9

http://www.4-mss.com/internet/htmls/statistics.html

The problem of information overload is more acute than ever. In fact, the
WWW is at risk of becoming unusable for serious work because too much
“noise” is making the relevant information nearly impossible to find:

The most immediate cause of information overload on the Web is caused
by the Web trying to fill the dual role of being both a private and public
information and communication medium. Issues that are privately im-
portant tend to be publicly uninteresting. When the background noise of
the medium drowns out most of the useful content for the wider audi-
ence, as is now happening on the Web, the effectiveness of the medium
is undercut.

This, incidentally, is the same problem that ultimately ruined the citi-
zen’s band radio industry. The CB became a relatively useless commu-
nication medium because the industry did not anticipate, and could not
handle, concurrent escalation in both volume of traffic and the propor-
tion of noise. Fortunately, such propensity for self-destruction may be
avoided in cyberspace because of its digital nature. Computational relief
is forthcoming from all quarters. [4, p. 20]

Since most of the world’s information is probably stored in unstructured doc-
uments written in natural languages—as opposed to databases—natural lan-
guage processing (NLP), i.e., the computational analysis of language, will play
an increasingly important role in the information systems which will help us
to deal with information overload: information retrieval systems, information
filtering systems, personal information agents, and new types of systems yet to
be devised.

1.2 Goals

The goal of this thesis is to evaluate whether linguistic methods can improve
the performance and user-friendliness of full-text information retrieval sys-
tems.

The importance of full-text retrieval has been greatly increased by the advent
of the World Wide Web, where most information is in the form of unstructured
natural language documents. However, few full-text retrieval systems apply
linguistic methods to the retrieval task, and if they do, they are at best very
rudimentary. An example might be the so-called stemming, i.e., the cutting off
of suffixes with the help of a list of endings.

The question is whether the consistent application of linguistic methods can
improve the search results and thus the usability of information retrieval sys-
tems. While stemming may yield acceptable results for English, I believe that
it can only deliver sub-optimal results for highly inflectional languages such as
German or Italian because changes of the stem or compounding are not han-
dled. The results of experiments with the SPIDER system [56] show for exam-
ple that retrieval performance for Italian is up to 130% better with stemming
than without. However, over 220 non-intuitive stemming rules are necessary
to achieve these results.

1.3 The CLUE Framework

This thesis is not isolated but has to been seen in the context of the Workbench
activities at the Department of Computational Linguistics at the University of

10

Erlangen (CLUE). The Workbench is a strategic project which aims at concen-
trating the research and development efforts at CLUE towards a comprehensive
system, and to promote the reusability and connectivity of the software. From
a functional point of view the goal of the Workbench is twofold:

1. Provide an environment for the development of linguistic components
and resources, e.g., grammars, lexicons, corpora, etc.

2. Provide a platform for end-user applications which use linguistic meth-
ods to improve their services. These applications would not only profit
from the linguistic services the tools of the Workbench provide, but
would also automatically get other benefits from the Workbench, such
as networking, collaborative multi-user support, etc.

The heart of the projected Workbench design are the Malaga grammar devel-
opment system [5], which will provide the linguistic processing, and a rela-
tional database management system, which will provide a uniform and com-
prehensive storage model for all necessary data, e.g., lexica, corpora, test sen-
tences, etc.

The experiences made with IRF/1, the experimental information retrieval sys-
tem developed for and described in this thesis, will help to implement the
Workbench: IRF/1 uses Malaga for morphologic analyses and stores its data
(the index) in a relational database. Apart from this, the retrieval functionality
could be used to allow full-text searching of the Workbench documentation, or
of the literature (papers, reports, etc.) needed by the users of the Workbench.

1.4 Overview

The structure of this thesis can be outlined as follows: Chapter 2 gives an
overview about different kinds of software systems dealing with information,
one of which, information retrieval systems, is treated in detail. Chapter 3
analyzes the relationship between information retrieval and natural language
processing. Chapter 4 describes the implementation of IRF/1, an experimental
retrieval system developed for this thesis, which incorporates CLUE natural
language processing tools. Chapter 5 describes the principles and problems of
evaluation for information retrieval systems in general, and for IRF/1 in partic-
ular. Finally, chapter 6 presents the conclusions which can be drawn from the
work done for this thesis.

11

12

2 Information Systems

“Mr. Helpmann, I’m keen to get into Information Retrieval.
Mr. Helpmann, I’m dying to get at this woman . . . no, no,
no.”

—Terry Gilliam, Brazil

2.1 Introduction

Computer programs which handle information are commonly subsumed under
the term information systems. The tasks of information systems are:

• storage,

• processing,

• retrieval, and

• distribution

of information items. The “information items” can be very diverse. The goal
of information systems is to help people by satisfying their information needs,
which ultimately means to help them to solve their problems. Although index
cards and printed catalogs could also be considered information systems, only
electronic information systems will be discussed here. Non-electronic refer-
ence material is losing its former importance very quickly against the obvious
advantages of electronic systems.

13

2.2 Applications

Information systems have a broad range of applications, e.g.:

• they support managers in making decisions by making vital company
data accessible,

• they support research in libraries by making bibliographic data available
for searching,

• they support lawyers and judges by allowing them to retrieve informa-
tion about similar cases from large databases of legal decisions,

• they support employment agencies by helping to match available jobs to
job seekers,

• they support engineers and maintenance crews of complex technical sys-
tems with fault databases and complete, searchable manuals which can
be consulted on site,

• they provide vendors with information about how many units of a par-
ticular product are on stock, and

• they help empirical linguists by making it possible to manage, search
and evaluate large corpora.

Naturally, different applications require different types of information systems.
According to their different applications, these systems have different charac-
teristics. Examples are:

• database management systems (DBMS) for structured data like person-
nel records or inventories,

• on-line public access catalogs (OPAC) for libraries,

• decision support systems for managers,

• corpus research tools for corpus linguistics, and

• information retrieval (IR) systems for the retrieval of unstructured infor-
mation like memos or reports.

Of all the possible information systems, this thesis is only concerned with IR
systems.

2.3 Information Retrieval

2.3.1 Overview

Although the term information retrieval seems to be very wide, information
retrieval generally focuses on narrative information. The items typically pro-
cessed by information retrieval systems include letters, newspaper and maga-
zine articles, books, medical summaries, research papers, Web pages, and so
on. These items are generally referred to as documents.

14

Sometimes information retrieval (IR) is used as a more general term, covering
all kinds of retrieval tasks, and document retrieval or text retrieval is used to
refer to the task outlined above. Very often, however, information retrieval
and document retrieval are used synonymously as document retrieval is the
prevalent area of research. I do not make this distinction either.

One important property of documents is that the information is encoded in
natural language, which exhibits the following problematic properties:

• Ambiguity: e.g., shot has many different meanings, including the act of
firing a gun, a photograph, an attempt, or an injection.

• Imprecision: there are many different ways to express a concept, e.g.,
sonographic detection of fetal ureteral obstruction, obstetric ultrasound,
and prenatal ultrasonic diagnosis all refer to the same concept of using
ultrasound to diagnose pregnancy (from [58, p. 5]).

• Implicitness: much of the information in a text is not expressed explic-
itly. Although start, begin, and initiate could be considered equivalent,
the preference of one term over an other by an author might convey im-
portant information which is difficult to formalize.

• Vagueness: Natural language is often very vague, e.g., rather large or
relatively small are not easily quantifiable in numbers.

As user requests for information, called queries, are also formulated in natural
language or use natural-language terms, they pose the same problems, making
it even harder to find the relevant information. Smeaton concludes from this
observation:

It is because of all these indeterminates that IR is a difficult problem. It is
also because of these indeterminates that users tolerate incorrect output
from an IR system and do not expect 100% accuracy, i.e. all retrieved
documents to be relevant.” [58, p. 4]

In a document retrieval system it is thus not certain that all relevant documents
are found, or that all retrieved documents are actually relevant to the query.
The ratio of documents retrieved versus the number of available documents
relevant to the query, i.e., the fraction returned out of all desirable documents
is called recall. The ratio of the number of relevant documents retrieved versus
the total number of documents retrieved, or the useful fraction of what was
actually retrieved is called precision. These two numbers are the most common
measures for the performance of IR systems. This subject will be discussed in
depth in chapter 5.

Database management systems, on the other hand, can give very precise an-
swers to detailed queries but cannot provide information on the basis of queries
that are only vaguely worded. A DBMS requires precisely stated queries,
and the main issue—and performance measure—is therefore how to efficiently
process the query and provide the requested data.

2.3.2 Implementation Issues

How does a typical information retrieval system work? Conceptually, an IR
system is similar to a traditional library: there is a collection of documents
and an access method. The simplest access method is linear searching, i.e.,

15

one document after another is scanned to see if it matches the query. The
UNIX grep utility could be considered a retrieval system of that type. Using
the library metaphor, this would correspond to reading all the books of the
library to find the ones you actually need. This approach is possible for a
small collection but is too inefficient for larger collections.

One solution to this problem would be to order the collection according to
some criterion, e.g., alphabetically by author. When searching for all docu-
ments by a specific author this would make it unnecessary to read all docu-
ments. However, if all documents containing some term are desired, they still
have to be searched sequentially.

A better solution is to build an index for the collection. An index corresponds
to a library catalog: instead of having to go through the shelves one can look
up the topic of interest in the catalog and finds the positions of the relevant
documents. Similarly, an index of an information retrieval system allows to
find the documents matching a particular query without having to look at the
documents themselves. This speeds up the search considerably (by several
orders of magnitude). However, an index has to be built before it can be used.
One common index type are inverted files. Inverted files work as follows. Each
document in the collection is a assigned a list of attributes which are supposed
to represent the document. The most common type of attributes are keywords.
The inverted file is then the sorted list of keywords of all documents, where
each keyword has links to the documents that contain that keyword (see figure
2.1.

Figure 2.1: Conceptual
organization of an inverted file

index (adapted from [29, p. 29])

Doc#2

Postings file DocumentsIndex file

Keyword

inform

retriev 2

Hits Link

4

Doc# Link

1

2

7

8

2

5

:
:

:
:

Doc#1

The question is now how to select the attributes for a document. As today’s
collection sizes are too large for manual indexing I will only discuss automatic
indexing. This means that the only practical methods are those where the index
terms—the keywords used for indexing—are extracted from the documents
themselves.

16

Controlled vocabulary approaches used to be quite popular for the selection of
index terms from documents. Under this approach only words which are in a
list of allowed index terms will be used for indexing. This method is closely
related to traditional manual indexing methods using a controlled indexing
language. While this method theoretically allows to build a very good index,
it has several drawbacks. First, the controlled vocabulary has to be specified.
This is only possible for a relatively small domain. Second, words that are not
included in the vocabulary are not searchable, and third, searching cannot be
done by end users but only by expert intermediaries who are acquainted to the
indexing language and know how to specify a query.

The modern approach, however, is to use the full text of the documents as
indexing terms (hence the term full-text retrieval). After the removal of stop
words (words which are too frequent to be of any use, e.g., determiners and
other function words), the remaining word forms are normally conflated, i.e.
supposedly semantically related word forms are mapped to a common form
(the actual index term).1 Finally, the index terms are weighted according to
their frequency and stored in the inverted file.2

Term conflation is usually done for two reasons: first, as stated above, different
morphological forms of a word should be mapped to a common form. The
assumption is that that the word forms are semantically related, and that in a
search for, say, stemming, occurrences of stemmed and stem are also relevant.
The second, though less important reason is that the conflation of terms reduces
the size of the index.

Since most research in information retrieval is being done for English, which
has a weak morphology, i.e., words have few morphologic variants, the most
common stemming method is suffix stripping3 . Suffix stripping uses a list of
frequent inflectional and derivational suffixes which will be cut off from word
forms to produce their stems. The two most frequently used algorithms in IR
are the Lovins stemmer [47] and the Porter stemmer [52]. Although studies on
the effectiveness of stemming to improve recall and precision produced equiv-
ocal results, most IR systems still include a stemmer. The opinions on stem-
ming range from “no effect” (e.g., [25]) to “significant improvement” (e.g.,
[41]).

Results for other languages, especially morphologically more complex ones
than English, are much clearer, though. These languages include Hebrew [10],
Slovene [51], Dutch [38], German, and Italian [56]. The stemmers used are
typically variations of the Porter stemmer, but there are some attempts to use
more linguistics: in [38] a dictionary-based stemmer is included in the eval-
uation, and in [56] a dictionary-based stemmer is used for German. Both of
these stemmers are based on the CELEX lexical databases [3] for Dutch and
German, respectively, and remove suffixes by dictionary lookup. Using the
dictionary, these stemmers also analyze compounds into their constituents. In
the next chapter, I will discuss the results of these and other approaches at
using natural language processing (NLP) for information retrieval.

1 Alternatively, query terms can be expanded.
2 This method is the one that is most frequently used. Syntactic and semantic approaches will
be briefly discussed in chapter 3. Term weighting will be described in chapter 4.
3 Prefixes are sometimes also removed but they are usually considered to change the meaning
of a word and better not be stripped.

17

18

3 Information Retrieval and NLP

In the last chapter we have seen that IR systems are required to handle natural
language both in the documents and in the user queries. Consequently, there
have been many attempts to meet the challenges posed by the properties of nat-
ural language with techniques from natural language processing (NLP). Prob-
lems arise on almost all levels of linguistic analysis, i.e., morphology, lexicon,
syntax, semantics, and pragmatics. In the following I will try to summarize
these problems and describe attempts to solve them.

3.1 Morphology

One of the first problems related to the use of natural language in information
retrieval is that of morphologic variation. This refers to the fact that words
may occur in inflected forms, or that derivation is used to produce new but
related words, or that words are combined into compounds. Morphologic vari-
ations can very often be regarded as semantically related and thus equivalent
for retrieval purposes. In English, the number of possible inflected and derived
forms is relatively small, and variation is mostly restricted to the attachment of
suffixes. Compounds which are not yet lexicalized are in most cases written as
separate words. Stemming, i.e., the removal of suffixes using a list of possible
suffixes, is therefore considered a practical way to map related word forms to
a common stem.

As mentioned earlier, the effectiveness of stemming for retrieval of English-
language documents is still being discussed because most evaluations (Table
8.1 in [21, p. 141] summarizes a number of such experiments) come to the
conclusion that it provides only little if any improvement in recall and preci-
sion. Some conclude from these results that all NLP for information retrieval
is more or less useless:

These results [claiming that stemming produces little if any im-
provement in precision/recall] are disturbing for those of us work-
ing in natural language processing (NLP). If it is hard to show that
something as simple as stemming is helpful, how can we possibly
justify our interests in more challenging forms of natural language

19

processing such as part of speech tagging, word sense disambigua-
tion, synonymy, phrase identification and parsing? [11, p. 310]

The aforementioned experiments for languages other than English [38, 56, 10,
51], however, provide considerable evidence for the usefulness of stemming
for more inflectional languages. In the SPIDER [56] and UPLIFT [38] projects
it was also found that for German and Dutch, two languages which have very
productive compounding processes, compounds should be split into their con-
stituent parts. Since decomposition of compounds cannot be done by a tra-
ditional stemmer, full-form dictionaries [3] were used in these experiments.
Compounds not included in the dictionaries were tried to split by matching
parts to simple dictionary entries.

3.2 Lexicon

When morphological variation has been taken care of, there remains the prob-
lem of lexical variation. In natural language it is possible to refer to a specific
concept using different words. This leads to search failures due to vocabulary
mismatch, i.e., the user specifies terms in their query that are different from
those that were used to index relevant documents. After all, users of IR sys-
tems look for concepts, not strings of characters. If, for example, a user issues
a query for cars, normally it does not mean that they are interested in every oc-
currence of the string “c-a-r-s”, but they rather look for documents concerned
with the concept of self-propelled land vehicles. This concept can partially—
not exhaustively—be described by the words car, automobile, pickup, minivan,
etc., but it may also be referred to by proper names such as BMW, Hyundai, or
Chevrolet.

Attempts have therefore been made to use thesauri to enrich queries with re-
lated terms or to control the vocabulary, e.g., by normalizing variant terms.
Although similar in some respects, thesauri used in IR systems should not
be confused with thesauri intended for creative writing, such as Roget’s The-
saurus, which are unsuitable for retrieval.

Thesauri can either be constructed manually or automatically from a collec-
tion of texts. Manual thesaurus construction is a very labor-intensive task and
“both an art and a science” [61, p. 166]. Automatic methods exploit statistical
relationships between terms and are thus necessarily not able to express all se-
mantic associations that might exist. Thesauri are always domain-dependent,
i.e., a thesaurus used for a collection of medical documents will not improve
the retrieval of legal documents. This implies that it is absolutely necessary
to identify the domain of the collection, also to supply the correct synonyms,
hyponyms, and hyperonyms for ambiguous words. Consequently, thesauri can
only be used for relatively homogeneous collections, which are rather the ex-
ception than the rule today. Furthermore, if they are not very carefully con-
structed, thesauri are likely to reduce the precision of the IR system by gen-
erating hypotheses about the concepts the user looks for which may not be
true.

20

3.3 Syntax and Semantics

NLP researchers tend to consider conventional retrieval systems “inadequate
for the obvious reason that they do not do NLP, and so cannot tell a Venetian
blind from a blind Venetian” [60]. The logical consequence is trying to make
syntactic and semantic relationships explicit, e.g., by building phrase or con-
cept indices. Actual systems implement this approach to various degrees: The
CLARIT system and experiments based on it (e.g., [19]) aim just for a shallow
understanding of the texts by approximating concepts through the analysis of
the phrasal structures of the documents. At the other end of the spectrum lies
the FERRET project [48], in which deep conceptual understanding was tried
to be achieved.

While this approach is theoretically convincing, it has failed to produce signif-
icantly better results than statistical methods. The use of syntax and semantics
is based on the assumption that an indexing for retrieval must directly and ex-
plicitly capture the syntactic and semantic relationships contained in the doc-
uments, as it is done in manual indexing. The results raise doubts about the
usefulness of doing this:

[. . .] decades of past experiment have shown that complex in-
dex descriptions modelled on manual prototypes are far too con-
straining, while complex terms (e.g., simple phrases with a head-
modifier structure) do not work much better than coordinated sim-
ple terms. These findings have been confirmed by tests under the
current ARPA/NIST Text REtrieval Conference (TREC) evalua-
tion programme, where many alternative specific approaches are
being assessed using very large full-text files. [60, p. 13]

A further problem is that semantics is a field which has not yet been fully
understood, especially if large quantities of free text are to be processed. Sys-
tems which can handle at least some aspects of semantics are still too slow
and unstable for industrial-strength IR. Syntax is much better understood than
semantics, and CLARIT, for example, is a commercial product, but most of the
points which make the use of semantics in production systems unwieldy (too
difficult, too large, too slow) also apply to syntactic analysis.

An additional point to consider is that both the users and the data of text re-
trieval systems are changing: The World Wide Web has made text retrieval
an end-user application which is used to retrieve short-lived multimedia doc-
uments in many languages out of an extremely large document collection. If
one watches the queries users issue to the WebCrawler search engine1 on the
Search Ticker (see figure 3.1), one can observe that most queries consist of just
one or two words, which doesn’t leave much room for syntactic and semantic
interpretation.

Although there are advances in the use of syntactic and semantic analysis for
use in IR, Salton and McGill’s opinion from 1983 still seems to be valid:

Various attempts have been made to use simple syntactic analysis
systems in actual information retrieval situations. While linguis-
tic methods may eventually prove essential in automatic indexing,

1 http://www.webcrawler.com/

21

http://www.webcrawler.com/

Figure 3.1: WebCrawler
SearchTicker

the available evidence indicates that the simplified syntactic anal-
ysis systems do not yet provide the answer. The frequency-based
phrase-generation methods are simpler to implement and are cur-
rently more effective. [54, p. 91]

3.4 Conclusions

While NLP-based approaches to IR are theoretically promising they have yet
to prove that they are able to practically improve retrieval results. Thesauri are
most useful for controlled-language indexing, which is rapidly disappearing.
Syntactic and semantic analysis are still to expensive and not yet able to pro-
cess unrestricted text. Good results have been achieved with shallow parsing
of noun phrases [19], although it does not dramatically improve retrieval ef-
fectiveness. It actually seems that “[. . .] NLP techniques are challenged by
the basic methods of statistical IR, which has apparently picked some of the
low-hanging fruit off the tree.” [45, p. 99]

The results of the UPLIFT and SPIDER projects, indicating that splitting com-
pounds can significantly improve Dutch and German text retrieval, look more
interesting. In both projects, only full-form dictionary lookup with simple
rules for compounding was used. I think that for several reasons this approach
might be improved by full rule-based morphologic analysis:

• Rule based analysis can handle a potentially infinite number of forms,
which is important if unrestricted texts are to be analyzed.

• For languages which have even more inflectional forms than German or
Dutch, and compounding, e.g., Finnish, the lexicon would have to be
extremely large.

• If compounding cannot be handled by simply concatenating word forms,
more powerful rule mechanisms will be necessary.

22

• It is probably desirable to handle all morphological processes in a uni-
form way on a linguistic foundation.

Compared to semantics, morphology is relatively well understood in tradi-
tional and computational linguistics, and there are implementations of mor-
phologic grammars which are potentially fast and stable enough to be used on
a day-to-day basis in a real-world IR system. Furthermore, when syntactic and
semantic analysis will eventually be usable, morphologic analysis will be an
essential precondition.

This reasoning resulted in the implementation of IRF/1, an experimental re-
trieval system which uses morphologic analysis to reduce word forms to base
forms and to decompose compound words. The design, implementation, and
evaluation of IRF/1 will be described in the following chapters.

23

24

4 Design and Implementation

If we are to achieve results never before accomplished, we
must employ methods never before attempted.

—Francis Bacon

4.1 Overview

The conclusion of chapter 3 was that morphologic analysis with decomposi-
tion of compounds is likely to improve retrieval effectiveness for German. To
evaluate this hypothesis, an experimental retrieval system called IRF/1 was im-
plemented. Another aspect in the design of IRF/1 was to test the suitability
of the CLUE NLP components for use in the text retrieval environment, espe-
cially with regard to their ability to process large amounts of text and to process
unrestricted text. These components will be described in section 4.2. In fact,
IRF/1 is the first non-linguistic application developed at CLUE that embeds the
CLUE NLP components.

4.2 Design Decisions

The basis for the linguistic components of IRF/1 is the Malaga grammar de-
velopment system [5, 55]. Malaga was developed at CLUE and consists of a
specialized programming language for natural language grammars, a compiler
for that language, a development environment including debugging facilities,
a visualization tool (see figure 4.1), and a library for using Malaga grammars
from C applications. Malaga is based on the formalism of Left-Associative
Grammar [30, 31], which is characterized by formal simplicity and compu-
tational efficiency, while being linguistically well-motivated. The available
grammars written in Malaga currently include morphology grammars for Ger-
man, Italian and Korean.

25

IRF/1 is designed to serve as a test bed for different processing approaches. The
evaluated methods are described in chapter 5. In some ways, IRF/1 is similar to
other current European research projects mentioned above. Table 4.1 contains
a point-for-point comparison.

The IRF/1 architecture is highly modular: components can easily be replaced
or updated when needed, and different implementations of components can be
evaluated. Figure 4.2 shows the basic module architecture of IRF/1.

Figure 4.1: Malaga Development
Environment

As you can see from table 4.1, a normalization approach was taken for query
processing. This means that only processed forms (e.g., base forms) will be
stored in the index, which can greatly decrease its size; this is important when
document collections become very large. Since morphologic analysis provides
information about the part of speech (POS) or word class of a word, it is possi-
ble to employ a list of stop classes, i.e., those word classes which have only or
mostly grammatical functions, or are generally useless for retrieval purposes
due to their frequency, like determiners or prepositions. Stop classes are sim-
ilar to stop words—which can be used at the same time—but allow to control
the inclusion or exclusion of large numbers of words with a single list entry.
Naturally this further reduces the size of the index.

Recognizing that multilingual applications will be rather the rule than the ex-
ception in the future, IRF/1 was designed from the ground up to accommodate
multilingual applications. To ensure language independence, IRF/1 automati-
cally detects the language of a document, and accordingly uses the language-

26

Table 4.1: Comparison of text
retrieval research

Area Systems
UPLIFT SPIDER IRF/1

NLP dictionary-based
stemming,
stemming

dictionary-based
stemming,
stemming

morphologic
analysis, stem-
ming

Phrase indexing no, rejected planned no
Dictionary CELEX Dutch CELEX German Proprietary
Dictionary size
(stems)

124 000 51 000 49 000

Dictionary size
(word forms)

380 000 360 000 unlimited

Query
processing

expansion normalization normalization

Figure 4.2: IRF/1 Module
architecture overview of the

RDBMS-based implementation

Rules and Lexica

IRF::VSRetrieval

Application

DBI

DBI Driver

RDBMS libmalaga

Malaga

IRF::Malaga

IRF::Linguistics

IRF::Stemmer IRF::Stoplist

IRF::LangID

Index

specific methods available for that language, or falls back to a generic mode
when none are available.

IRF/1 was implemented in Perl 5 [63], a high-performance interpreted language
especially suited for text processing. Although Perl can be used to quickly
“hack together” a script for some specific task due to its interpretative nature
and the fast turn-around times that result from it, it also offers very high-level
object-oriented concepts, including closures and multiple inheritance.

Perl also offers modules and packages for namespace separation and conve-
nient code reuse. The easy and seamless integration of C routines removes
all possible limits for extensions. In fact, Perl is probably the only language
for which such a huge public library of modules exists. The Comprehensive
Perl Archive Network (CPAN) (a replicated Internet FTP archive1) contains
over 670 modules by hundreds of authors which all follow the conventions of
object-oriented Perl programming and are thus ready to be reused with a sim-
ple use statement. This demonstrates that large-scale code reuse is actually
possible in Perl—something that other object-oriented languages like C++ and
Java, which have had much more publicity, have yet to prove.

1 The master server is ftp://ftp.funet.fi/pub/languages/perl/CPAN/ ; it is also mirrored at
ftp://ftp.uni-erlangen.de/pub/source/Perl/CPAN/

27

ftp://ftp.funet.fi/pub/languages/perl/CPAN/
ftp://ftp.uni-erlangen.de/pub/source/Perl/CPAN/

A further advantage of Perl is its high portability: The interpreter runs on
nearly every flavor of UNIX and on many proprietary systems, too. Conse-
quently, Perl programs run on all of these platforms without any changes. Ex-
periences with the Corsica [66] and Amalgam [37] projects have shown that
there are still considerable problems with C++ and Java in this respect.

Since the Malaga distribution contains a C library as an interface to its internal
functions, a Perl module (Malaga.xs,Malaga.pm) was written that allows
the direct analysis of word forms and sentences with Malaga grammars from
Perl. The functions provided by this module return the Malaga feature-value
structures as a complex Perl data structure, which allows easy processing using
the full power of the Perl programming language. This module is already being
widely used at CLUE for various applications besides IRF/1.

4.3 Preprocessing

Preprocessing is an important part of all text processing. Nevertheless, it is
often neglected. In the preprocessing stage file formats, character sets, and
markup can be converted, so that all text, regardless of its source, is in the
same format. In later stages all further processing can then be consistently
applied to all of the data, without the need to handle exceptions.

But if NLP is involved, preprocessing of the input text becomes even more
important, if not critical. Most NLP systems place rather tight restrictions on
the type of input they accept; if it does not comply with the requirements, the
processing might either abort, or produce unusable output. However, if NLP
is just one of several processing steps, “garbage in, garbage out” is not an
option since the following steps must be able to rely on the NLP output. Two
requirements follow from this:

1. NLP must be robust, and it must be precisely stated what it can handle,
and what it cannot.

2. Preprocessing must ensure that the source text be presented to NLP in a
form usable for it. For example, NLP programs usually need their input
to be tokenized, i.e. text elements (usually word forms or sentences) are
identified and placed on separate lines of the input.

In the IR setting, it must be absolutely avoided that documents become unre-
trievable because they were garbled by the NLP, and therefore not correctly
indexed. The following list contains some of the things NLP systems have
generally problems handling:

• Markup and layout information (bold, italics, capitalized, spaced out,
etc.)

• Proper names; this includes names of persons, such as Le Chevalier des
Etoiles or Prof. Dr. Hausser, Ph.D., geographical names like Fürth (Bay)
or Texas City, TX, and names of companies and institutions as The Open
Software Foundation, Inc. or Texas Instruments Holland B. V.; especially
confusing examples are Be, Inc. and Next, Inc.

• Abbreviations (etc., Inc., GmbH (German usage), Ges. m. b. H. (Aus-
trian usage), c/o, . . .)

28

• Monetary amounts (1,50 DM, $3.5 million, £5, . . .)

• Measurements (40m2, 3 sq. mil., 9µF, 30 ◦C, . . .)

• Dates; there is extremely wide variety in the notation of dates, and
they are often ambiguous. Examples are 4.11.97 (German), 1997-11-
04 (ISO/IEC 8601 [34]), 11/04/97 (American or British, meaning either
November 4, or April 11), or 111600Anov1997 (NATO date-time group,
denoting November 4, at 1600 hours local standard time).

• Foreign words or quotations (Galileo’s famous quote: « Oppure se
muove ! »)

• Special elements and notations, like chemical formulas (H2O, C4H4N2,
FeS2)

• Non-obvious sentence boundaries

• Unknown words

It is the task of the preprocessor to identify these troublesome points and to
ensure that they are correctly handled by following processing steps. With
respect to NLP, this can mean:

• supplying “world knowledge” (e.g., by consulting a dictionary of abbre-
viations or proper names),

• giving hints for the analysis (e.g., by marking words which belong to-
gether, or by indicating that they should not be analyzed at all), and

• normalizing variant forms.

For IR applications it is especially important that terms likely to be searched
for, like company and product names, are properly identified and possibly nor-
malized. Depending on the domain of the indexed texts, one might also con-
sider to extract factual information, such as dates and numbers, and index them
in a normalized form.

Following are two examples for how some of the constructions mentioned
above (and more) can occur. Note especially the scope of the genitive ’s.

The Del The Del Fuegos, O Positive, and We Saw The Wolf will per-
form acoustic sets in Amnesty International USA Group 133’s Seventh
Annual Benefit Concert at 8 p.m. on Friday, March 19, at the First Parish
Unitarian Universalist Church in Arlington Center. [6, p. 26]

An industry analyst, Robert B. Morris III in Goldman, Sachs & Co.’s
San Francisco office, said . . . [6, p. 33]

Although I was aware of the problems outlined above, there was no time for
me to implement a sophisticated preprocessor. Therefore, IRF/1 currently uses
a rather ad-hoc program that simply strips its input of all unneeded elements.
Thanks to the modular architecture of IRF/1, however, it is always possible
to replace the current preprocessor with a more powerful one, e.g., the one
that is currently being developed at CLUE. IRF/1 does not use the preproces-
sor/tokenizer developed in [66] because of bugs which can result in untok-
enized or missing text.

29

Language identification, however, was considered too important for the whole
system—and useful in general—to be left out. Since no free implementation
was available, a language identifier was written, which will be described in
section 4.4.

4.4 Automatic Language Identification

4.4.1 Overview

Linguistic methods are inherently language-dependent. For a text to be cor-
rectly analyzed it is necessary to know in which language it is written. For
example, analyzing German text with an English grammar will probably lead
to undesirable effects. For small, homogeneous collections the text language
can be specified manually, but this is not possible for large text collections like
the WWW, which contains documents written in many different languages,
most of them without a formal indication of the language.

Furthermore, automatic identification of language is not only necessary to en-
sure that the correct grammar is applied, but also allows to annotate the indexed
documents, so that it is possible to restrict the search to documents in specific
languages, as it is offered by Digital Equipment Corporation’s AltaVista search
engine, for example.

While most of the work is being done for spoken language, automatic lan-
guage identification for written texts also has many other possible uses, which
explains why there is research going on at Sun Labs [62] and Xerox [65]. There
are at least two commercial language identification tools by large companies
[50, 65].

The implementation described in the following sections is based on the algo-
rithms described in [18].

4.4.2 Design and Implementation

When presented with the following 20-character text samples:

den anforderungen ih
r being a successful
nous republions le d
messaggi chimici che

most people would possibly be able to identify them as German, English,
French, and Italian, respectively, even if they did not understand these lan-
guages.

This ability can be modeled on the computer by low-order character-level
Markov chains (for an in-depth treatment of statistical methods in linguistics
see for example [40]). Of course, this does not capture the structure of a lan-
guage very well, but this is obviously not necessary for language identification;
it is more the “look” that is important here.

A Markov chain is a random (stochastic) process in which the probability of
the next state depends only on the current state. More formally, a Markov
chain defines a stochastic variable whose values are strings from an alphabet
Ω, and where the probability of a particular string S is

30

P(S) = P(s1 . . .sn) = P(s1)
n

∏
i=2

P(si|si−1) (4.1)

The conditional probabilities P(si|si−1) are called transition probabilities.

A simple example of a Markov chain might be used to model the British
weather according to [24]. We assume that the weather is observed at intervals
of half an hour and that it can be in one of three states (making up the alpha-
bet Ω): s0, it’s neither raining nor foggy (which is extremely unlikely), s1, it’s
foggy, and s2, it’s raining. The weather at a point of time t is characterized by
a single one of these three states. We can now build a transition matrix:

W = (wi j) =

0.1 0.45 0.45
0.25 0.5 0.25
0.25 0.25 0.5

 (4.2)

Using this model, we can ask and answer questions about British weather pat-
terns over time. For example, what is the probability (according to the model)
that, if it’s currently neither raining nor foggy, at the next two checks it’s rain-
ing, and then foggy?

P(s0,s2,s2,s1|W) =P(s0)P(s2|s0)P(s2|s2)P(s1|s2)

=π0w02w22w21

=1.0 ·0.45 ·0.5 ·0.25

=0.05625

(4.3)

where π0 denotes the initial state probability for s0, which is 1 in this case
because it was actually observed.

A random process where the probability of the next state depends only on the
last k states can also be described by Markov chains by using the last k states
as the current state. These Markov chains are called Markov chains of order k
or n-gram models (where n = k + 1; an n-gram is a sequence of characters of
length n).

The transition probabilities look like this:

P(si+1 . . . si+k|si . . . si+k−1) = P(si+k|si . . . si+k−1) (4.4)

If we assume that the distributions of strings in the language satisfy the distri-
bution for a k-order Markov chain, we can now use a k-order Markov chain,
where k is relatively small (1 or 2, 2 in our implementation), to produce a sim-
ple model of language. In this case, the alphabet Ω is the set of characters in
the language (e.g., a subset of ISO 8859-1 [33]).

We do this by building a transition matrix similar to the one for the weather
example above, only that it has more states since the alphabet is larger, and
that it is k +1-dimensional. However, it can be collapsed into a 2-dimensional
table (see equation 4.4). Table 4.2 shows a part of the transition matrix this
implementation uses for German.

31

Table 4.2: Trigram transition matrix l m n o p q r s
de .009 .089 .287 .032 .032 .032 .352 .071
di .032 .032 .014 .032 .032 .032 .040 .008

If we have a table like this for every language we want to be able to identify,
we can calculate the probability for a string S to be generated by a particular
Markov chain A like this:

P(S|A) = ∏
s1...sk+1∈S

T (s1 . . . sk,S)P(sk+1|s1 . . . sk|A) (4.5)

where T (s1 . . . sk,S) is the number of times the k +1 gram s1 . . . sk+1 occurs in
the string S.

To avoid problems of numeric underflow, we compare logarithms of these con-
ditional probabilities. This gives us:

logP(S|A) = ∑
s1...sk+1∈S

T (s1 . . . sk,S) log P(sk+1|s1 . . . sk|A) (4.6)

By computing this value for each of our language models and selecting the
largest, we can pick the language model which is most likely to have generated
the observed string.

How do we get the transition probabilities (also known as model parameters)
for a language? We can learn them from sample texts (this is also referred to
as training). By counting the number of occurrences of n-grams in the text
and then estimating the probabilities for the n-grams we have observed, i.e.
P(sk+1|s1 . . . sk|A) (from above).

The most obvious estimation method is the maximum likelihood estimator

P(sk+1|s1 . . . sk|A) =
T (s1 . . . sk+1,SA)

T (s1 . . . sk,SA)
(4.7)

where SA is the training string for language A. This, however, is not completely
satisfactory for our application because our training data is relatively limited,
so that it will necessarily happen that n-grams which were not in the training
data appear in the data to classify. The maximum likelihood estimator gives
n-grams which do not appear in the sample a probability of 0, which results
in P(S|A) = 0. This would result in a completely wrong classification if this
n-gram actually appeared in the training data of one language because every
string containing this n-gram would then be automatically judged to be from
this language.

What we use instead is the Bayesian estimator which minimizes the mean
squared error for P(S|A) instead of maximizing the probability. The details
are described in [18]; the final form is the expression

p̂ =
T (s1 . . . sk+1,SA)+1
T (s1 . . . sk,SA)+m

(4.8)

32

also known as Laplace’s sample size correction. This method is used in the
implementation described in this thesis.

4.4.3 Performance

In [18] the following conditions are identified as relevant to the performance
of a language classifier:

1. Selection of test strings

2. Amount of training data

3. Length of strings to be identified

4. Number of languages to be identified

5. Correlation between domain and language (quality of training data for
the intended identification task)

Figure 4.3: Identification Accuracy

Accuracy (%)

20 bytes, all languages

20 bytes, best results

50 bytes, all languages

50 bytes, best results
it

fr

en

de

0.00
20.00
40.00
60.00
80.00

100.00

A
cc

ur
ac

y
(%

)

Test
Language

We can confirm the relevance of these points. The quality and size of the train-
ing data becomes more important with more languages; this problem didn’t
occur in [18] since selections from a parallel English-Spanish corpus for train-
ing and testing were used and English and Spanish were the only languages.

In [18] both the training and testing data were carefully selected and manually
checked; there wasn’t enough time to do the same for this implementation,
so the data was selected in a rather ad-hoc manner from corpora available at
CLUE, and from on-line sources like newspapers and press releases. Never-
theless, this implementation compares quite favorably to the original one as
well as to the commercial ones. Up to now, training has been performed for

33

German, English, French, and Italian with 50K of training data for each lan-
guage.

For 20 byte strings and optimal language pairs, an average accuracy of 98.73%
is achieved, which rises to 99.69% for 50 byte strings. For strings longer than
60 bytes no errors could be observed for any of the languages, thus achieving
100% accuracy (see figure 4.3). Classification speed is approximately 340 20-
byte strings per seconds when deciding between two languages, but the current
implementation was not optimized for speed.

4.4.4 Possible Enhancements

To avoid false classifications due to insufficient training or test data a threshold
for accepting a classification could be introduced. No work has been done in
this direction yet, since language identification is only one component of IRF/1.

4.5 Indexing

4.5.1 Morphologic Analysis

Two basic indexing methods were implemented: stemming and morphologic
analysis. Since the stemmer that I originally wanted to use (Text::German by
Norbert Fuhr, available from CPAN) had problems with some of the input, a
new stemmer (Text::German::Stem) was written. This stemmer is rather sim-
ple but its overall quality is not worse than that of Text::German (although
it is different). Text::German has some very limited linguistic knowledge, e.g.
about base forms of verbs, but this often leads to spurious analyses, like nichen
as base form of nicht (“not”).

Given a word form, a morphologic analyzer, unlike a stemmer, which only
produces a more or less linguistically motivated stem, should return its base
form, properties of the base, such as the word class, gender, etc., as well as
information on the specific form, such as case, number, tense, mood, or, in the
case of a compound, its constituent words.

To do this, two things are needed: a lexicon and grammar rules. The format
of the lexicon depends on the grammatical formalism and its specific imple-
mentation. In the case of Malaga, which is based on the LAMORPH approach
to morphologic analysis [30], the lexicon contains only morphemes, which
are compiled into an allomorph lexicon by the application of so-called allo-
morph rules. The allomorph lexicon is then used by the combination rules to
concatenate allomorphs into word forms according to the principles of Left-
Associative Grammar [30].

As of this writing, there are three morphologic grammars for Malaga (de-
scribed in section 4.2), and a fourth one (EMM) is being developed in parallel
to this thesis:

• DMM for German [46]

• IMM for Italian [64]

• Komoran for Korean [42]

• EMM for English [43]

34

Due to the lack of a large lexicon, Komoran can currently only be regarded as
a toy grammar. IRF/1 was therefore designed to use DMM and IMM, and to
easily accommodate EMM and Komor.

Morphologic Analysis for IR

For a morphologic analyzer to be usable in a real-world application, such as an
IR system, its coverage of the language is critical. This means that the lexicon
must contain the most frequently used words, either of the language in general,
or of the domain it is to be applied to, and that the grammar rules must describe
a sufficient part of the morphologic processes.

The trouble with real-world texts is that they tend to contain words that are not
even in the most comprehensive dictionary. These are then coupled or mod-
ified (or simply misspelled) in creative ways that are not described in gram-
mar books. If automatic morphologic analysis is to be used on such texts,
the system is required to handle unknown words robustly. What this exactly
means depends on the application: Sometimes a slightly overgenerating gram-
mar might be sufficient, or one might wish that the system constructs a hypoth-
esis, or some sort of automatic lexical acquisition may be desired. In yet other
cases it might be considered better if no—possibly wrong—attempt is made at
the analysis of unknown word forms.

Another problem is morphologic ambiguity: If there is no syntactic informa-
tion available, many word forms are morphologically ambiguous, which may
lead to the selection of incorrect base forms. For example, the DMM analysis
of Hausmeister (“janitor”) without morphologic filtering produces eight anal-
yses (see figure 4.4). Using the morphologic filtering feature of DMM this can
be reduced to one analysis, and in this case it is the correct one. Morphologic
filtering reduces the need for syntactic analysis by applying a number of tech-
niques like the weighting of morphologic processes. It works very well but
there has not yet been any formal evaluation. So, it remains to be seen if the
results are good enough, or if additional syntactic analysis is necessary; if so,
a shallow analysis might be sufficient. Nevertheless, IRF/1 currently relies only
on the morphologic filtering feature of DMM for German word forms.

Figure 4.4: Ambiguity in German
compounds (correct analysis in

boldface)
Haus + Meister

Hausmeister

hausen + Meister
Haus + meistern

hausen + meistern Haus + meister (superlative)

hausen + meister (superlative)

Haus + mei + Ster
hausen + mei + Ster

The IMM grammar, however does not have an integrated disambiguation
mechanism. Due to the different morphologic properties of Italian, if one were
to be devised, it might have to be along totally different lines. An example for
morphologic ambiguity in Italian are the two analyses for giornalista (“jour-
nalist”) displayed in figure 4.5.

Although it is etymologically correct to derive giornalista from giorno (“day”),
the first analysis is the one that is desired (one might argue, though, that gior-
nalista should be derived from giornale (“journal”)). This type of ambiguity
can be resolved by simply counting the number of applied morphologic pro-
cesses (here in the SIN_CG slot), and selecting the analysis where the fewest

35

Figure 4.5: IMM analysis for
giornalista "giornalista"

1:

CG: nominale
NUM: Sg
SIN_CG: nominale, flessivo

LXM: "giornalista"

ELEMENTS: "giornalist" , "a"

2:

CG: nominale
NUM: Sg
SIN_CG: sostantivo , suffisso, suffisso, flessivo

LXM: "giorno"

ELEMENTS: "giorn", "al", "ist", "a"

processes were applied. This is admittedly a bit simplistic, but it could be
improved after a more thorough analysis of morphologic ambiguity in Italian.

In contrast to IMM, where disambiguation was not considered in the design,
EMM is intended to be integrated into a tagger called Toccata, which is being
designed from the ground up to use several (statistical) disambiguation meth-
ods. It remains to be seen how this can be integrated into IRF/1. Until the
completion of EMM an implementation of the Porter stemmer2 can be used
for English.

Figure 4.6: DMM analysis for
Hausmeister "Hausmeister"

AnalysisType: Parsed
Surface: WordForm: "hausmeister"

Form:

POS: Substantive

Syn: Gender: Masculine
CaseNumber: NomSg&DatSg&AccSg&NomPl&GenPl&AccPl

Mor:

Weight: 0.8

Lexemes: Morpheme: "haus"
Allomorph: "haus" ,

Morpheme: "meister"
Allomorph: "meister"

WordStructure: ...

Sem: BaseForm: "hausmeister"

accept

Figures 4.6 and 4.7 show sample analyses of the DMM and IMM grammars
to show their variation in both structure and contents. Despite attempts at
standardization, the formats of the analyses of the grammars unfortunately still
differ greatly from one another. What is more, the formats change frequently,
which requires a close tracking of the development. This is even worse because
the application needs at least some knowledge of the analysis format to work
efficiently with it.

2 The Perl module Text::English by Ian Phillipps, available from CPAN.

36

Figure 4.7: IMM analysis for
risurgimento "risurgimento"

1:

CG: sostantivo
GEN: Mas
NUM: Sg
SIN_CG: prefisso , verbo , suffisso, flessivo

LXM: "ri", "surgere"

ELEMENTS: "ri", "surg" , "iment", "o"

In IRF/1 several measures help to overcome this problem. There is an object-
oriented wrapper (called IRF::Malaga) around the Malaga module for Perl.
This serves several purposes: It allows to abstract from the inner workings
of Malaga, especially by allowing to (virtually) use several grammars at the
same time. This is accomplished by lazily loading the grammar only when it
is needed, and then keeping it active until another grammar is requested. This
approach is easier to program (because no inter-process communication (IPC)
and no server process are needed) and less memory-intensive than the original
Malaga/MX3 approach, where all grammars were always active. It has the ob-
vious drawback that there is a delay when the active grammar is switched. This
is not a problem when indexing for IRF/1, because it occurs relatively seldom,
since (1) the grammar can only be switched between documents, and (2) all
documents that are indexed in one batch are usually in the same language. The
other advantage of using IRF::Malaga is that it makes changing the interface
to the grammars easier, because the details are hidden from the programmer.

Furthermore, all morphology and stemming routines are only accessed through
the IRF::Linguistics module, which uses the IRF::Malaga, IRF::Stemmer, and
IRF::Stoplist modules and provides a uniform interface regardless of the un-
derlying methods. If, for example, the analysis format of DMM changed again,
only changes in this module would become necessary. Similarly, if a new lan-
guage were to be added, code would only need to be added here.

4.5.2 Storage

General

Three types of data need to be stored in an IR system:

1. the index,

2. the documents, and

3. information about the documents (document metadata)

The central component of any IR system is the index. The index is the basis
for the fast retrieval of relevant documents. It is also what differentiates an
3 Malaga/MX was a multi-user, multi-grammar Malaga server I wrote around July 1996.

37

IR system from simple search utilities like the UNIX grep command, which
linearly search documents for text strings (although there are experimental IR
systems which use grep internally, e.g. [2]). The most common data structure
for full-text retrieval systems is the inverted file index as described in section
2.3.2. Conceptually, an inverted file index consists of a record for each term
that appears in the document collection. A term’s record contains pointers to
all occurrences of the term in the document collection. The pointers typically
reference a document and possibly the location in the document or a weight.

The full text of the indexed documents should also be accessible through the
IR system, and must therefore be stored somewhere. In a system which has
only abstracts (of paper documents) indexed, these will be normally stored
‘within’ the system, while the full documents must be physically fetched from
their shelves. This type of IR system is becoming less important as the full
text of more and more documents is available on-line, making it viable to ac-
cess the documents themselves directly from the IR system. If the documents
are relatively short (e.g. newswire stories) or not intended to be modified (i.e.
archived documents), it may still be sensible to store them in the IR system.

However, in a decentralized networked environment, and with documents that
are frequently modified at their original locations, it will be more appropriate
to simply provide a storage identifier which enables the retrieval of the full
document. This is essentially how search engines for the WWW work: They
provide the user with hyperlinks to documents relevant to their query. The full
text of the document (or the images, or whatever media the document may
also contain) is not stored in the search engine (except for the index terms), but
resides only at its original location, from which the user can retrieve it.4

The storage identifiers would be part of the document metadata, which may
also include the title, the document language, the document size, the number
of terms it contains, its format, or a document representation like an abstract
or a thumbnail image.

In IRF/1, the full text of the documents is stored outside of the system, as a
file on a local or remote disk. Consequently, only the index and the document
metadata has to be stored and handled by IRF/1.

Requirements of IRF/1

The following quotation, describing the reasoning for the reimplementation of
the INQUERY system also serves quite well to describe the ideas guiding the
implementation of IRF/1:

Typically, an IR system that depends on an inverted file index will use
custom data management software built from scratch to support the in-
dex. An advantage of this approach is that the software is designed
specifically to meet the requirements of the particular information re-
trieval strategy used in the system. A disadvantage is that building such
software is difficult and tedious, particularly if it must provide sophisti-
cated features such as concurrency control or recovery. [8]

Building a storage component was not an option because there was not enough
time available; consequently, reuse of existing software was the only choice.
4 If the environment is as fast-paced and decentralized as the WWW is, it is certain that some
“dead links” are among the list of relevant documents when documents disappear between in-
dexing runs. However, it would be even less practical if each search engine would hold its own,
most certainly outdated, copy of all documents it has indexed.

38

However, on what software should the storage component be based? Initially I
considered building upon an existing IR system, e.g. the classic SMART system
[54]. The selection criteria were:

• free availability,

• usable on HP-UX,

• source code in a common language available, and

• modular structure and sufficient documentation.

The first point is obvious—there is simply no budget for a thesis. The sec-
ond point must be fulfilled so that the system runs on the HP workstations at
CLUE and on the author’s personal machine. The last two points are required
so that the necessary modifications to accommodate the morphologic analysis
could be made with a reasonable effort and within a reasonable time frame.
SMART would have had the advantage of being a system explicitly designed
for conducting IR experiments. It depends, however, on non-standard system
functionality only available on Sun systems. This would have made a port
much too expensive and impossible to complete in the limited time. Other
evaluated IR systems did not meet the requirements much better. This doesn’t
mean that they are bad, only that they do not lend themselves to easy modifi-
cation necessary for an experimental system.

A complete IR system was therefore not available as a basis for IRF/1. Conse-
quently, a storage model for IRF/1 had to be devised which would not need to
be implemented from scratch, but which could reuse as much existing software
as possible, while still satisfying the requirements of IRF/1.

Data Structures for Text Retrieval

Traditionally, IR systems use specialized data structures such as tries. How-
ever, most of these structures are character-based, while the word forms of nat-
ural languages are composed of allomorphs. Futrelle and Zhang point out that
character-based structures may not be really appropriate to store and search
natural-language texts:

One of the problems of the character-based method is that they go
to great lengths to make it possible to do rapid searches for pat-
terns such as “c.t” where “.” is a wild card representing any single
character. In English, this would return the items, “cat”, “cot” and
“cut” which do not form any natural set of interest. Wild cards
fail in this example by returning too much and in other cases by
returning too little (no simple variant of “mouse” returns “mice”
nor does “is” return “are”. [23]

They further observe that regular expressions are typically used to find vari-
ant word forms, such as “develop.*” to find the word forms of develop, which
would become unnecessary if the word forms were morphologically analyzed
before stored in an index. Systems using these structures also lack two impor-
tant features of databases, namely data independence and the ability to store
structured information (at least not using uniform access methods). Data in-
dependence means that applications are independent of the physical data or-
ganization. An example from [22] is that when an index is added or removed

39

for a column in a relational database, no changes are needed in the applica-
tions which use this database. The relational data model of tables and relations
[14, 13] and the queries used to access the data abstract from the physical stor-
age and access methods actually used.

Off-the-shelf relational database management systems (RDBMS) have further
advantages besides using proven technology with a solid theoretical back-
ground. They offer flexible structures, so that attributes can be easily added
and removed, and they allow the easy addition, deletion, and updating of en-
tries, something which is very difficult with other approaches, where the addi-
tion of new documents to a collection usually imply a reindexing of the whole
collection:

Rather than update existing inverted lists when adding new docu-
ments, many IR systems simply rebuild the inverted file by adding
the new documents to the existing collection and indexing the en-
tire collection from scratch. This technique is expensive in terms
of time and disk space, resulting in update costs proportional to
the size of the total collection after the addition. [7]

RDBMSs usually also support multi-user access and transactions to ensure
data integrity; both features are not common for IR systems. Due to the gener-
ality of the relational model, when an RDBMS is available, it can be used for
many different applications, reducing acquisition and maintenance costs. Fi-
nally, although most RDBMS support only subsets of the SQL standard [35],
database systems have a relatively high degree of interchangeability thanks to
the standardization.

Despite these obvious advantages of RDBMS there is disagreement on whether
they can be used to efficiently implement an IR system. The disadvantages
named mainly include that RDBMS are usually not optimized for this spe-
cific application, which results in storage overhead, processing overhead, and
therefore suboptimal performance.

Chris Buckley reports the following about Edward Fox’s implementation of
SMART, which preceded his own:

A large number of people in recent years have suggested putting an
information retrieval system on top of one of the existing commercial
database systems. There are many advantages to be gained from this,
including uniform mechanism for accessing data, concurrency control,
and protection features. The disadvantages are the overhead in speed
and space. The previous version of SMART (Fox’s) was based on such
a system; the current version is not. [. . .] The relational system was
very efficient for experimental design. It was extremely flexible and it
allowed easy, uniform viewing and manipulation of the data input and
results.

Unfortunately, these easily designed experiments still needed to be run.
They were tremendously slow. Operations which ideally should take
about 5 seconds, were taking from 3 minutes to 45 minutes. One ex-
perimental run on a medium size database (77 queries and 12000 docu-
ments) could take several days to complete. The slowness of the system
hampered efforts of the experimenters to perform as many experiments
as they would like to. [9, p. 34]

Buckley identifies the following causes for the “painful slowness” [9, p. 34f]:

40

• The free version of INGRES was 2–3 times slower than commercial sys-
tems of that time

• Data structures commonly used in IR (e.g. trees) were difficult to repre-
sent in a relational system

• The overhead for exchanging data between the RDBMS and the applica-
tion was too high for the massive amounts of data used in IR processes.

The main advantage of custom storage solutions is therefore that they can be
optimized for the specific application they were designed for, potentially yield-
ing very high performance. On the other hand, there come a number of disad-
vantages with this solution. The maintenance cost is high, because the storage
software has to be maintained as well as the application, yet and another sys-
tem has to be administered in addition to the RDBMS a site may already be
running, since the storage software of the IR system is only usable for this
specific purpose. The performance optimization necessarily results in an in-
flexible structure, often making the later addition, deletion, and updating of
entries difficult, if not impossible. Due to its customized nature, the storage
manager will not be easily interchangeable with another product. Finally, all
the “hard” parts of data management, like multi-user and transaction support,
have to be written again.

A completely different approach is not to care at all how the data is actually
stored on disk but to use a persistent object store or an object-oriented database
management system (OODBMS) for the on-disk storage of the data structures
needed by the IR system. A persistent object store provides a programmer with
transparent persistence for their program objects, i.e. they are automatically
stored to disk and retrieved when referenced by the program. This completely
frees the programmer from handling the disk I/O themselves; the inverted file
becomes simply a collection of objects for each term or even for each occur-
rence. Examples of such systems are described in [23, 15]. However, since
there has not yet been done as much theoretical work on OODBMSs as on
RDBMSs some issues are not yet fully understood. Consequentially, “[...] it
will be some time before we understand fully how to extract performance from
OODBs that can match mature relational database systems.” [23]

A very interesting approach has therefore been taken in the conversion of the
INQUERY system. Originally it used a custom B-tree package for its inverted
file indices. As we have already seen, this can be advantageous because the
storage system can be specifically adapted to the needs and the particular in-
formation retrieval strategy of the IR system. It was recognized, however, that
“[...] building such software is difficult and tedious, particularly if it must pro-
vide sophisticated features such as concurrency control or recovery.” [8] The
developers therefore decided to replace the B-tree package with the Mneme
persistent object store [49]: “The result is a system that reaps the benefits of
using an existing data management facility without sacrificing performance or
functionality.” [8] INQUERY uses the object store directly by allocating an
object (basically a chunk of bits, identified by a number for Mneme) for each
inverted list that was formerly stored in the B-tree file. The performance of
INQUERY even improved relative to the original version, which shows that it
is not necessary to use custom software to get good performance out of an IR
system.

41

Conclusions

An increasing tendency to use off-the-shelf storage management software for
the implementation of IR systems can be noted in the literature (e.g., [49, 8, 7,
15, 1, 16, 22, 17]). Although custom storage management software provides
high performance, its inherent inflexibility and high development costs are no
longer considered acceptable. However, it is not yet clear what kind of storage
management software should be used instead of custom solutions.

For IRF/1 two approaches were realized: An object store approach influenced
by INQUERY and an RDBMS-based approach, which are described in the rest
of this chapter.

First Implementation: Object Store

Since no easy-to-use, freely available object store was found, a simple solution
based on the Berkeley DB package5 was developed. It consists of the two
modules IRF::Index and IRF::IndexUtils, and provides a restricted object store
which only handles one class of objects right now, namely IndexEntry objects.
This is further hidden behind the Index object.

When requested by an Index object, an IndexEntry object can return itself
in a linearized form, which is then stored in the DB database. As one can
see, IRF::Index provides a very high-level interface, making it easy to use and
extend. If desired, the underlying storage manager could be replaced by a
commercial product like Object Design, Inc.’s ObjectStore without changes to
the interface.

Second Implementation: RDBMS

Because the CLUE Workbench (see section 1.3) is planned to use an RDBMS
for uniform storage and access to all types of data, it would be useful if IRF/1
could be integrated into the Workbench and use the RDBMS for the storage
of its indices. Consequently, a version of IRF/1 was prepared which can use
any RDBMS supporting SQL. The inverted file index is stored in a database
consisting of three tables, as outlined in figure 4.8. Note that this is a simplified
figure and that the actual tables may contain more fields.

The words table maps every distinct word form which appears in the docu-
ment collection to a unique identifier (word_id). This is standard practice
in corpus retrieval applications (see [66]) to avoid the overhead of storing the
surface of every word at every occurrence. This table also contains the docu-
ment frequency for each word, i.e. the number of documents in the collection
in which a word occurs. The docs table contains the document metadata for
each document of the collection, like title, storage identifier, language, format,
etc. This table is normally accessed by document ID (doc_id), but additional
criteria, like the language of the document, can be used. The number of distinct
terms which occur in the document (also referred to as the length of the doc-
ument) are also stored in this table (in the size column). The occur table
finally contains the index proper. Each record in this table corresponds to one
occurrence of a word (referenced by word_id) in a document (referenced by
doc_id). It also contains the frequency of occurrence of this word in this doc-
ument (the within-document frequency) in the freq column. The document

5 Available from http://mongoose.bostic.com/db/ . Berkeley DB may be freely redistributed and
used under non-commercial conditions.

42

http://mongoose.bostic.com/db/

Figure 4.8: Tables for the Index
Database

doc_id storage_identifier

word_id doc_id freq

472

word_id surface docfreq

25 /zeitschriften/natur/unternehmer.txt

6960 25 2

6960 gestalten 14

words

occur

docs
title
Der Bio-Krösus aus dem Allgäu

size

frequency, the length of each document, and the within-document frequencies
are needed for the term weighting necessary for the ranked retrieval model
described in section 4.6

Given the tables shown in figure 4.8, the following SQL query would retrieve
the titles of all documents containing a word form of gestalten:

SELECT doc s . t i t l e
FROM wo r d s , d o c s , o c c u r
WHERE wo r d s . s u r f a c e = ’ g e s t a l t e n ’ AND

o c c u r . w o r d _ i d = wo r d s . w o r d _ i d AND
doc s . d o c _ i d = o c c u r . d o c _ i d

Currently IRF/1 uses the mSQL RDBMS6 by Hughes Technologies Pty. Ltd.
However, since the Perl DBI module is used, which provides a database-
independent interface, any other database system that supports SQL could eas-
ily be used instead.

The RDBMS-based architecture proved much more flexible than the object
store of the first implementation. The relational system was very efficient for
experimental design. I have already cited Buckley’s comment on the INGRES-
based implementation of SMART above, and his observation that it “[. . .] was
extremely flexible and it allowed easy uniform viewing and manipulation of
the data input and results” [9, p. 34] also applies to the RDBMS-based imple-
mentation of IRF/1. Since IRF/1 could not be tested on very large collections
anyway (due to the lack of such collections for German) the potential perfor-
mance penalty was not of concern. For the collections and queries it was tested
with, IRF/1 was more than sufficiently fast. Only this approach was therefore
made completely operational and used for the evaluation.

4.6 Retrieval

The retrieval of documents is done by the IRF::VSRetrieval module. This
module implements a retrieval strategy based on the vector space model [54,
26] with term weighting. The index is stored in three tables of a relational
database, as described above.

6 Available from http://www.hughes.com.au/ . mSQL can be used freely for academic purposes.

43

http://www.hughes.com.au/

Figure 4.9: IRF/1 Web Interface

The first retrieval systems were based on Boolean logic (they are therefore
often called Boolean systems). Queries consisting of a variety of terms are
constructed using the Boolean operators AND, OR, and NOT. These opera-
tions are implemented by using set intersection, set union, and set difference
procedures, respectively. For example, to retrieve documents on information
retrieval a query like “information AND retrieval” might be used. The follow-
ing procedure might the be used to identify the corresponding documents:

1. Retrieve the document IDs associated with the term “information” from
the index. This set of IDs is set A.

2. Retrieve the document IDs associated with the term “retrieval” from the
index. This set of IDs is set B.

3. Determine the intersection of set A and set B, that is, the document IDs
which are contained in both set A and set B. This is set C.

4. Retrieve the titles etc. of the documents identified by the IDs in set C
and display them for the user.

44

Although Boolean systems allow to formulate very precise queries, there are a
number of problems with them. First, if queries get more complex they become
difficult to formulate for untrained users, resulting in poor retrieval results. As
Harman notes, “[. . .] end-users are likely to be familiar with the terminology
of the data set they are searching, but lack the training and practice necessary
to get consistently good results from a Boolean system because of the complex
query syntax required by these systems.” [26, p. 363] Second, the retrieval
results are not ordered or ranked according to their possible relevance for the
query. This means that the set of retrieved documents has to be reduced by
intersection until the number of documents is small enough to be inspected
by the user. A ranking approach seems to be easier to use, especially for the
end users mentioned by Harman. This approach allows the user to simply give
a natural language sentence or phrase as a query and get a list of documents
ranked in the order of their relevance to the query. Harman [26, p. 363f] lists
the following advantages of this approach:

• All terms in the query are used for retrieval, with the results being ranked
based on cooccurrence of query terms, as modified by statistical term
weighting.

• Users are not required to learn a formal query syntax, and some results
are provided even if a query term is incorrect (not in the data, misspelled,
etc.).

• It also works well for complex queries that may be difficult to express in
Boolean logic.

There are different models for building a ranking retrieval system, but the most
important is probably the vector space model. In the vector space model a doc-
ument collection is regarded as an n-dimensional space. Each dimension rep-
resents one of the terms assigned to the documents of the collection (see figure
4.10). Each document can therefore be represented by a vector (t1, t2, . . . , tn).
In the simplest case ti is 1 if term i is present, and 0 if it is absent in the docu-
ment. A query can be represented in the same manner.

For example, if we have a document collection with seven unique terms, say,
improvement, information, linguistics, overhead, retrieval, storage, systems,
then the query

“linguistics for information storage and retrieval systems”

would be represented by the vector ~q = (0,1,1,0,1,1,1), where an element is
1 if the corresponding term occurs in the query, and 0 if it does not. So, the first
0 indicates that the term improvement is not included in the query, whereas the
first 1 indicates that the term information is present in the query, and so on. The
documents in the collection can be represented in the same way, for example:

~d1 = (1,1,0,1,0,1,0)

~d2 = (0,1,1,1,0,0,1)

~d3 = (0,0,1,0,1,1,1)

45

Figure 4.10: Three-term document
space

Doc 2

Term 1

Doc 1

Doc 3

Term 3

Term 2

To determine which document matches the query best the angle between the
query vector and each of the document vectors is measured. The smaller the
angle between two vectors, the more similar they are considered. Usually the
cosine of the angle between the two vectors, or just the scalar product of the
two vectors is calculated (this will be explained in more detail below). If the
scalar (or inner) product between the query vector and each of the document
vectors is calculated for the example we arrive at the following ranking:

~q · ~d1 = (0,1,1,0,1,1,1) · (1,1,0,1,0,1,0) = 2

~q · ~d2 = (0,1,1,0,1,1,1) · (0,1,1,1,0,0,1) = 3

~q · ~d3 = (0,1,1,0,1,1,1) · (0,0,1,0,1,1,1) = 4

~d3 matches the query best, while ~d1 is the worst match. To improve the retrieval
quality, it is possible to perform the same operation using weighted vectors, i.e.
vectors where each element is not just 0 or 1 but a number which indicates the
importance of this particular term. For the example this might look as follows:

~q · ~d1 = (0,1,1,0,1,1,1) · (1,2,0,1,0,2,0) = 4

~q · ~d2 = (0,1,1,0,1,1,1) · (0,2,4,1,0,0,1) = 7

~q · ~d3 = (0,1,1,0,1,1,1) · (0,0,1,0,5,3,2) = 11

The weight might be the frequency of the term in the document or a different
measure, such as the scarcity of a term in the collection, or some user-defined

46

term weight. Term weighting is known to usually provide “substantial im-
provement in the ranking” [26, p. 365].

Although it is possible to implement a system in the way described in this
example (the “Sequential Access” mode of SMART seems to work this way;
see [9] for details) it would be a very inefficient system because all document
vectors in the collection would have to be compared with the query vector. It is
more efficient to base the retrieval system on a standard inverted file enriched
with the information needed for term weighting. This is done in the SIRE
system [54, p. 118ff], [26, p. 384f]. This mode of operation is also available
in SMART [9, p. 13] under the name of “Inverted Access for Vector Queries.”
This method was also chosen for IRF/1. Conceptually it works as follows:

1. For each query term, the document IDs of the documents containing this
term, along with the weight of that term, are retrieved from the index.
This is equivalent to a Boolean query where all terms are connected with
the OR operator. In fact, a Boolean system can be used for this task, and
is actually used by IRF/1 since an RDBMS is based on Boolean logic.

2. For each document, a vector of the length of the query can then be con-
structed. These vectors are compared to the query vector and the rank of
each document is calculated.

This method is much more efficient than the one described in the example
above: instead of all documents only those which contain at least one term of
the query have to be compared, and the vectors have only as many elements as
the query has terms, and thus only those terms have to be looked at which have
an actual influence on the similarity of a document. Furthermore, if no user-
defined weights have been assigned to query terms, the query vector contains
only elements which are 1. The query vector can therefore be dropped from
any multiplication which is needed to determine a document’s rank.

Because there are a number of different methods available, I have intentionally
avoided to specify concrete methods to determine term weights and to calculate
the similarity of documents to queries up to this point. These methods will be
discussed in the rest of this section. Before this, however, I want to point out
that in IRF/1 term weights are not stored in the index but calculated on the fly.
This has the advantage that the weighting function can be changed, and that
new documents can be added without the need to update all index entries.

The idea of term weighting is based on the observation that not all words in
a collection occur with the same frequency, i.e. they are not randomly dis-
tributed. As a result of this, classes of words are distinguishable by their oc-
currence frequencies. Specifically, when the distinct words in a body of text are
arranged in decreasing order of their frequency, the occurrence characteristics
of the vocabulary can be described by Zipf’s Law (see e.g. [54]):

Frequency ·Rank ' const. (4.9)

This means that the frequency of a given word multiplied by its rank in the list
is approximately equal to the product of frequency and rank for some other
word. Furthermore, different frequency classes of words differ in the amount
of content they bear. For example, the top-ranked words are almost all function
words, which bear no or almost no content. For information retrieval purposes,

47

a useful index term has two functions: (i) it must be related to the information
contained in the document, so that it helps to retrieve the document (called the
recall function in [54, p. 62]), and (ii) it should help to distinguish a document
or a group of documents from the rest of the collection to prevent retrieval
of all documents, whether wanted or not (the precision function). Words that
occur extremely often in a document are likely to be function words, and are
thus not representative for the content of a document. Similarly, a term like
computer is likely to be an unsuitable index term in collection of computer
science documents, because it is very likely to occur in every document in the
collection—it will not help to distinguish one document from another.

These observations suggest the use relative frequency measures to identify
terms which are relatively frequent in a few documents in the collection, but
have a relatively low frequency over the whole collection. Several term weight-
ing functions have been devised to emphasize those terms which satisfy the
above criteria. The best-known functions are the inverse document frequency
(IDF), the signal-noise ratio, and the term discrimination value.7 Of these I
will only describe the IDF measure in detail, because it is used in IRF/1; it has
proved to yield very good results in numerous experiments, many of which are
referenced in [26].

The inverse document frequency measure was originally devised by Sparck
Jones in [59]. It is based on the assumption that the importance of a term t is
proportional to its frequency in each document d (without stopwords), that is
freqtd , the within-document frequency, and inversely proportional to the total
number of documents in which it occurs, the so-called document frequency
df t . The IDF is traditionally specified as

IDFd = log2
N
df t

+1 (4.10)

where N is the number of documents in the collection. The logarithm is used
to flatten the curve somewhat for relatively low values of df t , for which the
IDF values would otherwise grow exponentially. In IRF/1 the calculation of the
IDF is implemented as

IDFd = ln
N

d ft
+1 (4.11)

because the natural logarithm is provided as a built-in function by most pro-
gramming languages, which is usually more efficient. Since the results of ln
and log2 are approximately of the same size, this does not invalidate the func-
tion.

To account for the fact that the importance of a term increases with its fre-
quency in a given document, the IDF should be combined with the within-
document frequency. It should however be normalized to reduce the effects of
high-frequency terms and to compensate for document length. For IRF/1 the
following function is used (from [26, p. 375], log2 again replaced with ln):

nfreqtd =
ln(freqtd)+1

ln lengthd
(4.12)

7 All of these functions are described in [54, p. 59ff]; [26] gives very helpful guidelines for the
selection of ranking techniques.

48

where lengthd is the number of unique terms in document d. The normalized
within-document frequency is then multiplied with the IDF to produce a com-
posite term weighting function. When a document vector is compared with
the query vector this function is used to calculate the weight of each term in
the document vector. The two vectors are compared by measuring the angle
between the two vectors. This can be done by calculating the cosine of the two
vectors:

cos(~q, ~d) =

n

∑
i=1

qidi

√

n

∑
i=1

q2
i ·

n

∑
i=1

d2
i

(4.13)

where n is the number of components of the vectors, qi and di are the compo-
nents of ~q and ~d, and q and d are the absolute values or lengths of ~q and ~d,
generally:

|~a| = a =

√

n

∑
i=1

a2
i (4.14)

The greater cos(~q, ~d), the more similar the document is to the query, and the
higher is its rank. The retrieved documents are then sorted according to their
rank and presented to the user. As an extension relevance feedback can be
implemented, where the query is reevaluated after the user has reduced or in-
creased the weight of query terms based on the initial search results.

49

50

5 Evaluation

Come, give us a taste of your quality.
—William Shakespeare, Hamlet

5.1 Introduction

The evaluation of information retrieval systems has been a concern of IR re-
search from the start. In this chapter I will describe why information retrieval
systems have to be evaluated, what should be evaluated, and how it can be
done. Finally, I will discuss the evaluation of IRF/1.

The task of an information retrieval system is to help its users to find informa-
tion (e.g. in the form of text documents) relevant to their information needs.
The utility of an information retrieval system for its users therefore depends on
how accurately the retrieved information matches the expectations of the users,
how quickly the information is delivered, and how easy the system is to use.
Or, as Salton and McGill put it: “Few customers will want a system incapable
of retrieving what they want and of rejecting what they do not want. Nor will
they want a system that is difficult to handle, slow in furnishing responses, or
expensive to use.” [54, p. 158] Consequently, information retrieval systems
must be evaluated before they are put in operation to avoid costly failures. But
evaluation is equally important for research systems, even if they will never
be publicly accessible, to see if the new methods which were experimentally
introduced are promising enough to be further pursued.

There are basically two types of evaluations: tests for efficiency, and tests for
effectiveness. The effectiveness of an information retrieval system depends on
its ability to provide its users with the information they need, while the effi-
ciency is determined by the time and resources needed to perform a specified
task.

51

In most areas of computer science it is possible to consider only efficiency,
because the task of the system is exactly specified, and the complete and cor-
rect solution is an absolute precondition. Take a C compiler for example: If it
claims to be compliant with the ISO C standard [36], it can be checked against
the specifications of the standard to see if it works as specified and generates
correct code. If it does, it has solved its task correctly, and only the efficiency
with which it does its job has to be measured.

While it is relatively easy to generate correct and fast machine code from a
correct C program, the ultimate goal of information retrieval—to retrieve all
and only the documents from a document collection which are relevant to a
query—is currently not possible to achieve. That is, there is no perfect so-
lution, and thus the difference between IR systems is primarily in the quality
of the retrieval, whereas it is expected that a C compiler works, so that the
question is mainly how efficiently it works.

In this respect the evaluation of information retrieval systems poses challenges
similar to the evaluation of natural language processing systems, like morpho-
logic analyzers (see e.g. [32]). In fact, NLP could be considered an IR task:
Out of the set of possible analyses, the relevant (i.e., correct) analyses have
to be retrieved (see [44] for an example where the quality of morphological
analysis and disambiguation is measured in recall and precision). Similar to
information retrieval, where—as I will describe below—it is difficult to deter-
mine the relevance of retrieved documents, it is often not easy to determine if
an analysis of an NLP system is correct.

The quality of an information retrieval system obviously depends on both its
efficiency and its effectiveness, and both have to be evaluated. However, the
retrieval effectiveness is often of greater importance than the efficiency of the
system. This is especially true for experimental systems since they are not
yet optimized for speed as production systems would be. Therefore I will be
mainly concerned with the evaluation of retrieval effectiveness in this chapter.

5.2 Evaluation Criteria for IR Systems

The next question is then, what to evaluate? As early as 1966, Cleverdon [12]
(cited after [53, p. 112]) listed six main measurable quantities:

1. The coverage of the collection, that is, the extent to which the system
includes relevant matter;

2. the time lag, that is, the average interval between the time the search
request is made and the time an answer is given;

3. the form of presentation of the output;

4. the effort involved on the part of the user in obtaining answers to his
search requests;

5. the recall of the system, that is, the proportion of relevant material actu-
ally retrieved in answer to a search request;

6. the precision of the system, that is, the proportion of retrieved material
that is actually relevant.

52

The first four of these six criteria are relatively easy to assess. Recall and pre-
cision, however, pose a problem because they rely on the notion of relevance.

5.3 Relevance

In information retrieval, the notion of relevance is usually interpreted as a log-
ical property between two texts, the query and a document. A document is
considered relevant if contains material which is appropriate to the require-
ments stated in the query. This could be described as an “objective view” [54,
p. 163] of relevance. A subjective view of relevance would not only have to
consider the content of a document, but it would also have to take into account
the knowledge of the user, and what documents they already know about at the
time of the query. Although this interpretation of relevance is probably closer
to its meaning in everyday language, this is not (yet) possible, since the system
cannot know what a user already knows about a topic.

However, even when taking an objective view on relevance, the relevance of
a document with regard to some query must be somehow determined. This
problem will be discussed after an overview of the standard effectiveness mea-
sures.

5.4 Standard Effectiveness Measures

Let E be a set of documents, the document collection, and let A ,B ⊂ E , where
A is the set of relevant documents with respect to some query, and B being the
set of actually retrieved documents in response to that query.

These definitions can be conveniently arranged in a ‘contingency table’1 like
table 5.1.

Table 5.1: ‘Contingency table’ Relevant Nonrelevant
Retrieved A ∩B Ā ∩B B
Not retrieved A ∩ B̄ Ā ∩ B̄ B̄

A Ā

Many effectiveness measures can be derived from this table, the most impor-
tant being recall and precision. The precision P of a retrieval system for some
query can be defined as:

P =
|A ∩B |
|B |

(5.1)

That is, precision is the proportion of retrieved documents that are relevant.
The recall R of a retrieval system for some query can then be defined as:

R =
|A ∩B |
|A |

(5.2)

1 This table is commonly being referred to as contingency table (see e.g. [53, p. 114], [54, p.
175]) although it does not have anything except the form in common with a contingency table
as used for χ2 tests.

53

That is, recall is the proportion of relevant documents that are retrieved. Recall
and precision are related in such a way that the higher the recall, the lower the
precision, and vice versa. The goal is, of course, to maximize both recall and
precision at the same time. A third measure, fallout, is less often used but can
also be useful:

Assuming that retrieval effectiveness increases with the number of rele-
vant items obtained in answer to a query, and decreases with the number
of nonrelevant items retrieved, a measure appears to be needed which
reflects the performance for the nonrelevant documents in the same way
as recall measures the performance of the relevant. [54, p. 174]

The fallout F of a retrieval system for some query can then be defined as:

F =
|Ā ∩B |
|Ā |

(5.3)

That is, fallout is the proportion of retrieved documents that are not relevant.
Precision, recall, and fallout are further dependent of the generality factor G,
which is a measure of the density of relevant documents in the collection (i.e.
the average number of relevant documents per query). The relationship be-
tween these four parameters is:

P =
R ·G

(R ·G)+F · (1−G)
where G =

|A|
|E|

(5.4)

For every query submitted to a retrieval system, precision and recall can thus
be computed. This is the most commonly used measure of retrieval effective-
ness. The problem with recall and precision, however, is that they are based on
relevance. Van Rijsbergen wrote in 1979 with regard to this problem:

There has been much debate in the past as to whether precision and recall
are in fact the appropriate quantities to use as measures of effectiveness.
[. . .] However, all the alternatives still require the determination of
relevance in some way. [53, p. 113]

Salton and McGill, four years later, in 1983, pointed out that precision and
recall “[. . .] present the greatest difficulties both conceptually and in practice.
An immediate problem in determining the recall and precision is the interpre-
tation of relevance.” [54, p. 163] And thirteen years after van Rijsbergen,
Frakes still has to write:

Most IR experimentation has focused on retrieval effectiveness—usually
based on document relevance judgments. This has been a problem since
relevance judgments are subjective and unreliable. [. . .] The serious-
ness of the problem is the subject of debate, with many IR researchers
arguing that the relevance judgment reliability problem is not sufficient
to invalidate the experiments that use relevance judgments. [20, p. 10]

Some judgment of relevance is obviously necessary if one aims at retrieving
relevant documents, although this is probably the hardest part in the evalua-
tion of IR systems. Thus, to determine the precision and recall values for an

54

information retrieval system, a test collection with associated test queries and
corresponding relevance assessments for each query is needed. The construc-
tion of test collections is the subject of the next section; I will also discuss
some approaches which try to reduce the number of manual relevance judg-
ments which need to be made.

5.5 Test Collections

5.5.1 Overview

To be able to reuse relevance judgments, it is desirable to design and build a
standard collection of documents and user queries, with associated relevance
judgments. This has the further advantage that different information retrieval
systems can be compared. [53, p. 113] describes the usual way to construct a
test collection:

These questions [the test queries] are usually elicited from bona fide
users, that is, users in a particular discipline who have an information
need. The relevance assessments are made by a panel of experts in that
discipline. So we now have the situation where a number of questions
exist for which the ‘correct’ responses are known. It is a general assump-
tion in the field of IR that should a retrieval strategy fare well under a
large number of experimental conditions then it is likely to perform well
in an operational situation where relevance is not known in advance.

Table 5.2 lists some of the most widely known and used test collections with
their respective properties.

Table 5.2: Test collections
(adapted from [27, p. 337]). The

abbreviations mean: N Docs,
number of documents; Avg T/Doc,

average number of terms per
document; N Req, number of
requests; Avg T/Rq, average

number of terms per request; Avg
R/Rq, average number of relevant

documents per request.

Collection N Docs Avg T/Doc∗ N Rq Avg T/Rq∗ Avg R/Rq
Older Test Collections

Cranfield 1,398 53.1 225 9.2 7.2
ADI 82 27.1 35 14.6 9.5
MEDLARS 1,033 51.6 30 10.1 23.2
TIME 423 570 24 16.0 8.7
CACM 3,204 24.5 64 10.8 15.3
CISI 1,460 46.5 112 28.3 49.8
NPL 11,429 20.0 100 7.2 22.4
INSPEC 12,684 32.5 84 15.6 33.0

Newer Test Collections
OSHUMED 348,566 ∼250 101 ∼10 17/19.4†

Cystic Fibrosis 1,239 49.7 100 6.8 6.4–31.9‡

FSupp 11,953 1,823 44 17 35
Fed 410,883 1,235 44 17 56
TREC-1 741,856 444.4 50 83 277
TREC-2 741,856 444.4 50 105 210
TREC-3 741,856 444.4 50 60 196
TREC-4 567,529 842.0 50 10 130

∗ These numbers should be viewed as approximations for comparison only, as varying the
stoplists and varying the stemmers will cause these numbers to change.
† There are two levels of relevance for this collection, definitely relevant and possibly relevant.
‡ There are 6 levels of relevance for this collection ranging from specific to comprehensive.

55

Since a test collection should be as large as possible, and since human experts
are needed to judge the relevance of hundreds of documents with respect to
hundreds of queries, it is prohibitively expensive (both in time and money) to
create test collections in this way for all but the largest organizations, where
the necessary funds are available. It is therefore not surprising that other ways
to build a test collection or to determine relevance have been searched for.

5.5.2 Reducing the Need for Human Relevance Judgments

Pooling Method

For the massive TREC2 collections (see table 5.2), an approach known as the
pooling method [28] was used. For the pooling method to build a test collec-
tion, after documents and queries have been collected, all queries are presented
to many different retrieval systems. The best n documents from each query are
put into a pool of documents. It is then manually determined for each query
which documents in its pool are relevant, and which are not.

This approach has the advantage that the number of relevance judgments that
need to be made by domain experts are limited to only those documents which
make it into the pool retrieved for a query. The method is based on the assump-
tion that if many different retrieval systems are used, the probability of having
almost all relevant documents retrieved will be relatively high, since different
systems have different characteristics and thus retrieve different sets of doc-
uments for a given query. However, the cost of relevance judgments in this
method of building test collections can still be considerable since the pools
of documents can be quite large. For the TREC collection, the 100 or 200
best documents from each system are admitted to the pool for each of the 50
queries. All of these documents have to be manually checked, resulting in the
average numbers of relevant documents per query listed in table 5.2. Another
problem is that many different retrieval systems have to be installed, adminis-
tered, and used in order to arrive at representative pools. If a retrieval system
that is later tested on this collection retrieves different documents, new rele-
vance judgments have to be made, and, if some of the documents are relevant
documents which had not been contained in the pool (because all the systems
used in building the collection failed to retrieve them), new documents have to
be added.

Evaluation Using Seed Documents

Sheridan, Ballerini, and Schäuble [57] of ETH Zurich therefore propose two
different methods, which they also use for their SPIDER retrieval system.

In the seeding method, relatively few documents which were determined to be
somehow unique are selected from the collection (the seed documents), and
queries are constructed to find these documents. The evaluation is based on
some measure of the system’s success in finding the seed document for each
query. In an application to video retrieval users were instructed to find the seed
documents, and the time used to find them was used to compare the different
retrieval systems. For a different task, the retrieval of OCRed library catalog
cards, around 2,500 words from a sample of 400 cards were identified which
were unique to one card. These words were then used as queries, and the cards
in which they occurred were the seed documents. The evaluation criterion in

2 Text REtrieval Conference, an open information retrieval competition organized annually
since 1993 by the U.S. National Institute of Standards and Technology.

56

this case was the percentage of seed documents returned in the top three rank
positions.

The advantage of this approach is that it requires much less resources than
the task of building a test collection using either the traditional method or the
pooling method, since only unique seed documents have to be identified, and
queries constructed to retrieve these documents. However, a large number of
queries should be used to compensate for the fact that for each query only one
document (the seed document) is being sought and evaluated. Furthermore,
while the seeding method simulates a realistic task (the user has the desired
document already in mind, e.g., because they have seen it once and want to
find it again), it is different from what is traditionally evaluated, namely a user
which has an information need and tries to find information relevant to that
need.

The ETH Multilingual Test Collection

For the latter task a multilingual (German and Italian) test collection was con-
structed at ETH Zurich [57]. This collection is based on news stories by SDA
(Schweizerische Depeschenagentur). To reduce the number of relevance judg-
ments needed, 65 completely unpredicted world events were identified to be
used as query topics. Since these events were unpredicted, there can be no doc-
uments before they occurred. A very strict notion of relevance is used which
considers only stories about this particular event relevant (e.g., for the Okla-
homa City bombing on April 19, 1995 only stories pertaining to this event are
relevant; reports on other terrorist attacks are not relevant). Thus, all docu-
ments dated earlier than the event can automatically be considered irrelevant.
Because there can also be relevant reports after the event occurred, the news
stories of up to three days after the event were also included, while all later
documents were discarded. For the documents in these three days after the
event manual relevance judgments are needed, which still amounted to about
65,000 judgments in the described case.

This method results in a separate document collection for each query, consist-
ing of:

• the news stories before the event, which are all irrelevant to the query

• the report of the event itself

• the news stories in the 3-days period after the occurrence of the event,
which have manually made relevance judgments.

If appropriate material is available, this is a very interesting approach at con-
structing a test collection because it provides the quality of relevance judg-
ments of the traditional approach (called “the naïve approach” in [57]) with a
drastically reduced amount of manual work.

Relative Recall

A different approach was taken for the evaluation of the IRENA system [2].
Based on the assumption that all of a collection is in some respects relevant
to every query (a single-domain collection about pop music was used), the
authors derive a new measure called relative recall (RR) from equation 5.2:

57

RR =
|A ∩B |
|E |

(5.5)

They describe the properties of RR as follows: “This new measure does not
give reliable results for individual queries, but it can be still used for comparing
recall between two or more queries.” [2, p. 10] However, it seems that several
normalization factors have to be used to approximate the real recall, some of
which seem to be rather ad-hoc, so that further investigation will probably be
necessary before this measure can be widely employed.

5.5.3 Conclusions

Although the methods that have been devised to make the manual relevance
judgment of all documents of a test collection unnecessary seem to arrive at
fairly reliable results, the design and construction of new test collections re-
mains difficult. For retrieval experiments on English texts this problem is not
very grave due to the relatively large number of freely available standard test
collections, which free the evaluators from building their own collections, ex-
cept perhaps for experiments in special domains or text types.

For languages other than English, however, there are no standard collections
yet. TREC now has Spanish and Chinese evaluations (called tracks), but re-
searchers developing information retrieval systems for other languages often
find it impossible to test their systems on large amounts of data due to a lack
of resources.

This is the reason why it was only possible to evaluate IRF/1 with a relatively
small collection. The methods and results of the evaluation will be described
in the following sections.

5.6 Evaluation of IRF/1

The goal of this thesis is to investigate whether the application of linguistic
methods to full-text retrieval will improve the retrieval effectiveness, especially
for German, which has a much richer morphology than English, for which
most retrieval experiments are made. In this section I will first describe the
expected behavior for different indexing methods. Then I will give an overview
of the test collection used for the evaluation experiments, which are described
afterwards. The results of the evaluation conclude this section.

5.6.1 Expected Behavior

Four different indexing methods were to be evaluated (the abbreviations in
parentheses will be used in the following tables and graphics):

1. Stemming (STEM)

2. Base form reduction by morphologic analysis (NODCMP)

3. Splitting of compound words into the base forms of their elements by
morphologic analysis (DCMP)

4. Base form reduction and splitting of compound words into the base
forms of their elements by morphologic analysis (BOTH)

58

To illustrate the index terms generated by the different methods, let us look
at the phrase Entscheidung des Bundesverfassungsgerichts (“decision of the
federal constitutional court”). First, des (“of the”) is filtered out as as stop
word, leaving Entscheidung and Bundesverfassungsgerichts. Table 5.3 shows
the index terms that are generated by the different methods.

Table 5.3: Index terms generated
by different methods

Entscheidung Bundesverfassungsgerichts
STEM entscheidung bundesverfassungsgerich
NODCMP entscheiden bundesverfassungsgericht
DCMP entscheiden bund, verfassen, gericht
BOTH entscheiden bundesverfassungsgericht, bund, ver-

fassen, gericht

This example was chosen to illustrate various morphologic phenomena of Ger-
man: verb-to-noun derivation by -ung, inflection (genitive -(e)s), and compo-
sition including the insertion of a linking morpheme (called Fugen-s) between
Verfassung and Gericht (Verfassungs is not a form of the inflectional paradigm
of Verfassung). It should be noted, however, that there are many more mor-
phologic phenomena.

The expected behavior of stemming (STEM) is to either produce high re-
call and low precision through overstemming errors (i.e., semantically distinct
word forms are mapped to one stem) or high precision and low recall through
understemming errors (i.e., the failure to map semantically related word forms
to one stem).

Morphologic analysis without decomposition (NODCMP) was expected to
produce consistently better recall and precision than STEM, because over- and
understemming errors are less likely to happen, and because changes of the
stem can be handled.

Decomposition of compounds (DCMP) was expected to considerably enhance
recall, especially in cases where a concept is expressed both by a phrase and a
(possibly ad-hoc) compound, as is often done for variation. An example might
be Mehrwertsteuererhöhung and Erhöhung der Mehrwertsteuer (“increase of
the sales tax”). Both a drop in precision and a rise in precision were considered
possible. The former because the possibly more specific compound is lost, the
latter because relevant documents would be ranked higher in cases like the one
described above. The BOTH method was thought to perform similar but to
prevent the possible drop in precision of the DCMP method by keeping the
base form of compounds.

These were the assumptions the experiments described in the following were
to verify or falsify.

5.6.2 Test Collection

Because no German test collection was readily available, I had to construct
my own. Articles from the German news magazine DER SPIEGEL were used
for this purpose. The articles are from the winter of 1995/96, when they were
collected from the magazine’s Web site for a corpus project at CLUE. The
topics range from German and foreign politics over science and economics to
culture and movie reviews. The summary or abstract at the beginning of each
article had already been identified and marked up for the corpus project. For
the test collection the summaries were separated from the body of the article.
Only the body text was then used for indexing. The summaries were used to

59

construct the test queries and were therefore not indexed to avoid “easy hits.”
Table 5.4 shows the general statistics of this collection.

Table 5.4: General statistics for the
test collection

Total number of documents 299
Total number of word forms (tokens) 402,022
Average document length (in word forms) 1344.56

Since document terms are reduced at indexing time instead of expanding query
terms at retrieval time, the term statistics depend on the indexing method used;
they are listed in table 5.5.

Table 5.5: Term statistics for the
test collection

STEM NODCMP DCMP BOTH
Total number of index
terms

36,360 39,889 22,951 41,303

Total number of term oc-
currences

145,007 142,150 142,937 174,247

Average number of terms
per document

484.97 475.42 478.05 582.77

Ten queries were then devised on the basis of the previously extracted sum-
maries. The relevant documents were selected manually, which is still pos-
sible, though tedious, for 299 documents. For larger collections one of the
methods described in section 5.5.2 would have to be used.

5.6.3 Measuring Procedures

It was decided to measure the retrieval effectiveness of IRF/1 in recall and pre-
cision (described in section 5.4) because these are the measures most widely
used. The measuring procedures follow the lines of [54, p. 157ff] and [53,
p. 112ff], which are the standard procedures for evaluations of SMART, and
which are also used at TREC. As already mentioned, the relevance of the doc-
uments for each query was determined manually. This is the most accurate
method, and recall can be calculated with nearly absolute certainty.

In the form as defined in section 5.4, recall and precision are directly applicable
only to Boolean systems, because they are defined in terms of sets. Ranking re-
trieval systems like IRF/1, however, yield an ordered (ranked) list of documents
instead of an unordered set. A pair of recall-precision values can therefore
be computed following the retrieval of each document in the ranked order. In
most cases, the output of ranking retrieval systems is only partially ordered,
i.e., several documents may have the same rank, and the order of documents
within a rank is random. Special provisions have then to be made concerning
the position of relevant documents inside of a rank. For this small test collec-
tion, however, the scalar product of the query and document vectors proved to
be a better similarity function than the cosine of the vectors (see definitions in
section 4.6). This is probably because of the normalizing effect of the cosine,
which might be to strong for small collections. The use of the scalar prod-
uct had the additional advantage for the evaluation that it produces a simple
ordering of the output (i.e., no two documents share a single rank). 3

Table 5.6 might serve as an example. It shows the results of an actual evalua-
tion query. There are four relevant documents for this query, which are marked
by “✔”.
3 Actually, only the probability is very high that under the circumstances of this evaluation no
ties occur in the ranking.

60

Table 5.6: Recall and precision
results for a sample query

Rank Weight Document ID Rel Recall Precision
1 2.9242 7 ✔ 0.25 1.00
2 1.0283 179 ✔ 0.50 1.00
3 0.6818 264 0.50 0.67
4 0.6511 217 ✔ 0.75 0.75
5 0.6332 188 0.75 0.60
6 0.6287 111 0.75 0.50
7 0.5502 8 ✔ 1.00 0.57

Given a set of recall-precision pairs, as shown in table 5.6, a recall-precision
graph can be constructed by plotting the precision against the recall. Figure
5.1 shows the graph corresponding to the recall and precision values from table
5.6. It should be noted that the lines connecting the points only serve to make
the plot easier to read. They do not allow the interpolation of values, since
only the measured recall and precision values are defined.

Figure 5.1: Recall-precision graph
for table 5.6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normally, one is not interested in the performance for a single query but in the
average performance of the system. To obtain average performance charac-
teristics, a number of curves such as the one from 5.1, each valid for a single
query, have to be processed. This makes it necessary to interpolate the curves
so that there is a unique precision value fore each recall point. The standard
method for doing this is to proceed as described in [54, p. 167f]: the origi-
nal graph is replaced by an interpolated version which consists exclusively of
horizontal line segments.4 This is done by starting at the highest recall value
and drawing a horizontal line leftward from each peak point of precision, up

4 Not of horizontal and vertical segments, as is often incorrectly stated, see e.g. [39, p. 15].

61

to a point where a higher precision point is encountered. The resulting curve,
representing the best performance a user can achieve, is shown in 5.2.

Figure 5.2: Interpolated
recall-precision graph for table 5.6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

Original curve

Interpolated curve

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Given a set of different recall-precision curves such as the one in figure 5.2,
each corresponding to a different query, average performance values can now
be obtained by computing the arithmetic means of recall and precision over n
test queries. Using the symbols from section 5.4, this is:

R̄ =
1
n
·

n

∑
i=1

|Ai∩Bi|

|Ai|
(5.6)

P̄ =
1
n
·

n

∑
i=1

|Ai∩Bi|

|Bi|
(5.7)

Since the recall and precision values for the individual test queries are unam-
biguously defined as shown in figure 5.2, the averages as defined in equations
5.6 and 5.7 are also uniquely determined. This enables the calculation of aver-
age precision values at fixed recall levels, which is the standard way of display-
ing retrieval performance. A typical interval size for recall values is 0.1. For
each test query the precision values are determined for the 11 levels of recall
from 0 to 1, and equation 5.7 is used to obtain average precision values over all
queries at each of the 11 recall levels. In the resulting curve, the left end cor-
responds to narrow, i.e. specific, queries, resulting in high precision and low
recall. The right end of the curve represents broad, i.e. rather general queries
which typically retrieve large numbers of documents with low precision.

Recall-precision curves are used to evaluate the performance of retrieval sys-
tems. Typically the recall and precision values for two or more systems, or
for one system operating under different conditions are calculated, and super-
imposed on the same graph to determine which system is superior. The curve

62

closest to the upper right-hand corner, where recall and precision are maxi-
mized, indicates the best performance.

5.6.4 Evaluation Results

Figure 5.3: Average recall-precision
graph for IRF/1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

STEM

NODCMP

DCMP

BOTH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Table 5.7 and figure 5.3 show the results of the evaluation for the four index-
ing/retrieval methods implemented in IRF/1. How do these results relate to the
expected behavior described in section 5.6.1? As expected, stemming (STEM),
the traditional method, establishes the base line. The use of morphologic anal-
ysis (NODCMP) to provide linguistically motivated base forms instead of the
“stems” of a stemmer results in some improvement in precision. This was also
expected; one might have expected a more significant improvement, though,
especially compared to the relatively crude stemmer which was used. A more
sophisticated stemmer might even further reduce the differences. Sophisticated
stemmers, however, also come close to full morphologic analysis in their com-
plexity and maintenance costs, if they do not even exceed it due to their rather
ad-hoc nature.

The performance improvement gained by the decomposition of compounds
(DCMP) in addition to base form reduction is far beyond what was expected.
Although the analysis of compounds was expected to be beneficial for the re-
trieval of German, it proves to be essential to achieve high recall and precision.
This observation was also made in the UPLIFT project for Dutch, which also
has very productive compounding:

The query expansion methods that do more than just conflate the mor-
phological variants and expand the query with new (but semantically
related) concepts, namely the methods based on compound analysis and
synonym expansion, gave the best Recall results. [39, p. 34]

What is even more interesting is that the expected deterioration of precision
due to the splitting of compounds did not occur, and that the addition of the

63

Table 5.7: Average recall-precision
results for IRF/1. The percentages

in the Improvement column
indicate the improvement in

precision from the worst to the
best result at the specific recall

level.

Recall Average precision for 10 queries Improvement (%)
STEM NODCMP DCMP BOTH

0.0 0.7000 0.8000 1.0000 1.0000 42.9
0.1 0.7200 0.8000 1.0000 1.0000 38.9
0.2 0.7024 0.8000 0.9333 1.0000 42.4
0.3 0.6774 0.7600 0.9417 0.9600 41.7
0.4 0.6022 0.6600 0.9050 0.8767 50.3
0.5 0.5022 0.5600 0.9050 0.8767 80.2
0.6 0.3776 0.3822 0.8077 0.7878 114.0
0.7 0.3500 0.3808 0.8035 0.7694 129.6
0.8 0.3321 0.3780 0.7096 0.7126 114.6
0.9 0.3321 0.3677 0.6884 0.6992 110.5
1.0 0.3321 0.3677 0.6884 0.6992 110.5

unsplit base forms of compounds (BOTH) did not result in any further increase
in precision.

Due to the small scale of the experiments, the individual numbers should not be
overestimated, but there is certainly a recognizable trend indicating that the use
of morphologic analysis for German text retrieval—and especially the analysis
and decomposition of compounds—yields significantly better retrieval perfor-
mance than traditional stemming. The higher initial development effort nec-
essary for morphologic analysis seems to eventually pay off when the more
complex task of analyzing compound words is required.

64

6 Conclusions

The question posed in the beginning was whether linguistic methods can help
to improve performance and user-friendliness of full-text retrieval systems. I
have shown in chapter 3 that currently only improvements on the level of mor-
phology can be considered. Stemming is the standard method here. While its
usefulness is still disputed for English, experiments for other languages have
shown it to be useful for more inflected languages. In the SPIDER and UP-
LIFT projects, dictionary-based stemming and decomposition of compounds
were found useful for Dutch and German. The results of chapter 5 confirm this
observation for German. They clearly indicate that linguistic knowledge on the
morphologic level can improve retrieval performance for German, especially
if compound word forms are decomposed into their constituents. This results
in high retrieval precision, even at high recall levels. Because the user does not
have to care how to formulate their query this is definitely also an advance in
user-friendliness.

To the user, compounds may often intuitively seem to better express a concept,
but they are difficult to handle without linguistic knowledge. Full-fledged nat-
ural language processing on a linguistic basis is often regarded as “overkill,”
too expensive, or too slow. The evaluation results, however, suggest otherwise.
As stated in chapter 5, the higher initial cost for laying down a solid, linguisti-
cally motivated foundation, is eventually compensated by more comprehensive
analyses and better scalability. While an inflectional stemmer might be devel-
oped faster and more easily than full morphologic analysis, it cannot simply be
extended to handle derivation and compounding. Any attempt to do so without
a linguistic basis will, with a very high probability, result in an unmaintainable
“kludge,” necessitating a complete rewrite. With full morphologic analysis,
however, the analysis of compounds is obtained at no additional cost. Further-
more, the latest version of Malaga brings a dramatic increase in speed and, at
the same time, lower memory requirements, making it more attractive than ever
to embed full linguistic NLP into applications. DMM, the German morphology
grammar, also proved that it is robust enough to be suited for the analysis of
real-world texts. Although no formal evaluation of DMM was conducted, the
recently improved disambiguation routines and the new hypothesis module for
unknown word forms seem to be very effective.

65

One can therefore conclude that the evaluation results for IRF/1 are very
promising. Further work should aim at validating the results of this thesis with
larger test collections. Since IRF/1 was designed to provide linguistically sup-
ported indexing and retrieval for any language for which a Malaga grammar
exists, it would also be of great interest to investigate how linguistics might
improve retrieval performance for other languages, or to research into cross-
language retrieval. When available, the use of syntactic and semantic analysis
could also be evaluated. Thanks to its modular architecture and the flexibility
of the vector space model, IRF/1 could also easily be extended with relevance
feedback and term reweighting methods to further improve retrieval perfor-
mance.

66

Bibliography

[1] Aoki, Paul M. 1991. “Implementation of Extended Indexes in POST-
GRES.” SIGIR Forum. 25(1): 2–9.

[2] Arampatzis, Avgerinos, Theofilos Tsoris, and C.H.A. Koster. n.d.
IRENA: Information Retrieval Engine based on Natural language Anal-
ysis. Technical Report. CTI, University of Patras/CSI, University of Ni-
jmegen, Patras/Nijmegen.

[3] Baayen, R. H., R. Piepenbrock, and H. van Rijn, eds. 1993. The CELEX
Lexical Database. CD-ROM. Linguistic Data Consortium, Philadelphia,
PA.

[4] Berghel, Hal. 1997. “Cyberspace 2000: Dealing with Information Over-
load.” Communications of the ACM. 40(2): 19–24.

[5] Beutel, Björn. 1997. Malaga 4.0. Manual. Abteilung für Computerlin-
guistik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen.

[6] Boguraev, Branimir, and James Pustejovsky. 1996. “Issues in Text-
based Lexicon Acquisition.” In Corpus Processing for Lexical Acquis-
tion, edited by B. Boguraev and J. Pustejovsky. Cambridge, MA: MIT
Press.

[7] Brown, Eric W., James P. Callan, and W. Bruce Croft. 1994. “Fast In-
cremental Indexing for Full-Text Information Retrieval.” Proceedings of
the 20th Conference on Very Large Data Bases (Santiago, Chile, 1994):
192–202.

[8] Brown, Eric W., James P. Callan, W. Bruce Croft, and J. Eliot B. Moss.
1994. “Supporting Full-Text Information Retrieval with a Persistent Ob-
ject Store.” Proceedings of the 4th International Conference on Extend-
ing Database Technology: 365–378.

[9] Buckley, Chris. 1985. Implementation of the SMART Information Re-
trieval System. Technical Report TR85-686. Cornell University, Ithaca,
NY.

67

[10] Choueka, Yaacov, and A. Zampoli. 1992. Responsa: An Operational
Full-Text Retrieval System with Linguistic Components for Large Cor-
pora: Computational Lexicology and Lexicography: a Volume in Honor
of B. Quemada. Pisa: Giardini Press.

[11] Church, Kenneth Ward. 1995. “One Term or Two?” Proceedings of the
18th Annual International ACM-SIGIR Conference on Research and De-
velopment in Information Retrieval 1995: 310–318.

[12] Cleverdon, C. W., J. Mills, and E. M. Keen. 1966. Factors Determining
the Performance of Indexing Systems: Vol. 1—Design. Technical Report.
Aslib Cranfield Research Project, Cranfield.

[13] Codd, Edgar F. 1990. Relational Model for Data Management: Version
2. Reading, MA: Addison-Wesley.

[14] Codd, Edgar F. . “A Relational Model for Large Shared Data Banks.”
Communications of the ACM. 13(6).

[15] Cutting, Doug, Jan Pedersen, and Per-Kristian Halvorsen. 1991.
“An Object-Oriented Architecture for Text Retrieval.” Proceedings of
RIAO’91.

[16] DeFazio, Samuel, Amjad Daoud, Lisa Ann Smith, Jagannathan Srini-
vasan, Bruce Croft, and Jamie Callan. 1995. “Integrating IR and RDBMS
Using Cooperative Indexing.” Proceedings of the Eighteenth Annual In-
ternational ACM SIGIR Conference on Research and Development in In-
formation Retrieval, Seattle, WA.: 84–92.

[17] Deßloch, Stefan, and Nelson Mendonça Mattos. 1997. “ Integrating SQL
Databases with Content-Specific Search Engines.” VLDB’97, Proceed-
ings of 23th International Conference on Very Large Data Bases, August
25-29, 1997, Athens, Greece: 528–537.

[18] Dunning, Ted. 1994. Statistical Identification of Language. Technical Re-
port CRL MCCS-94-273. Computing Research Lab, New Mexico State
University, Las Cruces, NM.

[19] Evans, David A., and Chengxiang Zhai. 1996. “Noun-Phrase Analysis in
Unrestricted Text for Information Retrieval.” 34th Annual Meeting of the
Association for Computational Linguistics—Proceedings of the Confer-
ence: 17–24.

[20] Frakes, William B. 1992. “Introduction to Information Storage and Re-
trieval Systems.” In Information Retrieval, edited by W. B. Frakes and R.
Baeza-Yates. Englewood Cliffs, NJ: Prentice Hall: 1–12.

[21] Frakes, William B. 1992. “Stemming Algorithms.” In Information Re-
trieval, edited by W. B. Frakes, and R. Baeza-Yates. Englewood Cliffs,
NJ: Prentice Hall: 131–160.

[22] Fuhr, Norbert. 1996. “Object-oriented and Database Concepts for the De-
sign of Networked Information Retrieval Systems.” Proceedings of the
Fifth International Conference on Information and Knowledge Manage-
ment (CIKM 1996): 164–172.

68

[23] Futrelle, Robert P., and Xiaolan Zhang. 1994. “Large-Scale Persistent
Object Systems for Corpus Linguistics and Information Retrieval.” Pro-
ceedings of the First Annual Conference on the Theory and Practice of
Digital Libraries.

[24] Goscinny, René, and Albert Uderzo. 1966. Astérix chez les Bretons. Paris:
Dargaud.

[25] Harman, Donna. 1991. “How Effective is Suffixing?” Journal of the
American Society for Information Science. 42(1): 7–15.

[26] Harman, Donna. 1992. “Ranking algorithms.” In Information Retrieval,
edited by W. B. Frakes, and R. Baeza-Yates. Englewood Cliffs, NJ: Pren-
tice Hall: 363–392.

[27] Harman, Donna. 1996. “Panel: Building and Using Test Collections.”
Proceedings of the 19th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval SIGIR 96: 335–337.

[28] Harman, Donna, ed. 1993. The First Text REtrieval Conference (TREC-
1). Special Publication 500-207. National Institute of Standards and
Technology, Gaithersburg, MD.

[29] Harman, Donna, Ricardo Baeza-Yates, Edward Fox, and W. Lee. 1992.
“Inverted Files.” In Information Retrieval, edited by W. B. Frakes, and R.
Baeza-Yates. Englewood Cliffs, NJ: Prentice Hall: 28–43.

[30] Hausser, Roland R. 1989. Computation of Language: An Essay on Syn-
tax, Semantics and Pragmatics in Natural Man Machine Communication.
Berlin: Springer Verlag.

[31] Hausser, Roland R. 1992. “Complexity in Left-Associative Grammar.”
Theoretical Computer Science. 106(2): 283–308.

[32] Hausser, Roland R., ed. 1995. Linguistische Verifikation: Dokumentation
zur Ersten Morpholympics 1994. Tübingen: Niemeyer.

[33] ISO 8859-1:1987. Information processing — 8-bit single-byte coded
graphic character sets — Part 1: Latin alphabet No. 1.

[34] ISO/IEC 8601:1988. Data elements and interchange formats — Informa-
tion exchange — Representation of dates and times.

[35] ISO/IEC 9075:1992. Information technology — Database languages —
SQL.

[36] ISO/IEC 9899:1990. Programming languages — C.

[37] Knorr, Oliver. 1997. Entwicklung einer Java-Schnittstelle für die lin-
guistische Arbeitsumgebung Malaga. Pre-master’s thesis, Institut für
Mathematische Maschinen und Datenverarbeitung, Friedrich-Alexander-
Universität Erlangen-Nürnberg.

[38] Kraaij, Wessel, and Renée Pohlmann. 1996. “Viewing Stemming as Re-
call Enhancement.” Proceedings of the 19th Annual International ACM
SIGIR Conference on Research and Development in Information Re-
trieval SIGIR 96: 40–48.

69

[39] Kraaij, Wessel, and Renée Pohlmann. n.d. Using Linguistic Knowledge
in Information Retrieval. Technical Report. Utrecht University, Utrecht.

[40] Krenn, Brigitte, and Christer Samuelsson. 1997.
The Linguist’s Guide to Statistics. Online document:
http://www.coli.uni-sb.de/˜christer/stat_cl.ps . Lehrstuhl für Com-
puterlinguistik, Universität des Saarlandes, Saarbrücken.

[41] Krovetz, Robert. 1993. “Viewing Morphology as an Inference Process.”
Proceedings of the Sixteenth Annual International ACM-SIGIR Confer-
ence on Research and Development in Information Retrieval 1993: 191–
202.

[42] Lee, Kiyong. 1995. “Recursion Problems in Concatenation: A Case of
Korean Morphology.” Proceedings of PACLIC 10, the 10th Pacific-Asian
Conference on Language, Information and Computation.

[43] Leidner, Jochen. 1998. Linksassoziative morphologische Analyse
des Englischen mit stochastischer Disambiguierung. Master’s the-
sis, Abteilung für Computerlinguistik, Friedrich-Alexander-Universität
Erlangen-Nürnberg.

[44] Levinger, Moshe, Uzzi Ornan, and Alon Itai. 1995. “Learning Morpho-
Lexical Probabilities from an Untagged Corpus with an Application to
Hebrew.” Computational Linguistics. 21(3): 383–404.

[45] Lewis, David D., and Karen Sparck Jones. 1996. “Natural language pro-
cessing for information retrieval.” Communications of the ACM. 39(1):
92–101.

[46] Lorenz, Oliver. 1996. Automatische Wortformerkennung für das
Deutsche im Rahmen von Malaga. Master’s thesis, Abteilung für Com-
puterlinguistik, Friedrich-Alexander-Universität Erlangen-Nürnberg.

[47] Lovins, Janet B. 1968. “Development of a Stemming Algorithm.” Me-
chanical Translation and Computational Linguistics. 11: 22–31.

[48] Mauldin, Michael L. 1991. Conceptual Information Retrieval. A Case
Study in Adaptive Partial Parsing. Boston: Kluwer.

[49] Moss, J. Eliot B. 1990. “Design of the Mneme Persistent Object Store.”
ACM Trans. on Information Systems. 8(2): 103–139.

[50] Novell Advanced Technology Division. 1997. Novell
ATD Collexion Language Identifier. Online document:
http://www.novell.com/atd/colx/alt/lanf/lanrec.html . Novell ATD,
San Jose, CA.

[51] Popovič, Mirko, and Peter Willet. 1992. “The Effectiveness of Stemming
for Natural-Language Access to Slovene Textual Data.” Journal of the
American Society for Information Science. 43(5): 384–390.

[52] Porter, M. F. 1980. “An Algorithm for Suffix Stripping.” Program. 14(3):
130–137.

[53] van Rijsbergen, C. J. 1979. Information Retrieval. London: Butterworths.

[54] Salton, Gerard, and Michael McGill. 1983. Introduction to Modern In-
formation Retrieval. New York: McGraw-Hill.

70

http://www.coli.uni-sb.de/~{}christer/statprotect T1	extunderscore cl.ps
http://www.novell.com/atd/colx/alt/lanf/lanrec.html

[55] Schulze, Markus. Forthcoming. “Morphologie, Syntax und Semantik
im Rahmen der linksassoziativen Grammatik.” Proceedings der GLDV-
Jahrestagung 1997, Leipzig.

[56] Sheridan, Páraic, and Jean Paul Ballerini. 1996. “Experiments in Multi-
lingual Information Retrieval using the SPIDER System.” Proceedings of
the 19th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval SIGIR 96: 58–65.

[57] Sheridan, Páraic, Jean Paul Ballerini, and Peter Schäuble. 1996. “Build-
ing a Large Multilingual Test Collection from Comparable News Doc-
uments.” Proceedings of Workshop on Cross-linguistic Information Re-
trieval, held in conjunction with the 19th Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval,
SIGIR 96.

[58] Smeaton, Alan F. 1996. “An Overview of Information Retrieval.” Agosti,
Maristella, and Alan Smeaton. 1996. Information Retrieval and Hyper-
text. Boston, MA: Kluwer: 3–25.

[59] Sparck Jones, Karen. 1972. “A Statistical Interpretaton of Term Speci-
ficity and Its Applicaton in Retrieval.” Journal of Documentation. 28(1):
11–20.

[60] Sparck Jones, Karen. 1997. “The way forward in information retrieval.”
elsnews. 6(3): 12–13.

[61] Srinivasa, Padmini. 1992. “Thesaurus Construction.” In Information Re-
trieval, edited by W. B. Frakes, and R. Baeza-Yates. Englewood Cliffs,
NJ: Prentice Hall: 161–218.

[62] Sun Labs International Linguistic Application Group.
1997. Language Identification Demo. Online document:
http://www.sunlabs.com/research/ila/demo/ . Sun Microsystems Labora-
tories, Chelmsford, MA.

[63] Wall, Larry, Tom Christiansen, and Randal L. Schwartz. 1996. Program-
ming Perl. Sebastopol, CA: O’Reilly.

[64] Wetzel, Christian. 1996. Erstellung einer Morphologie für Italienisch in
Malaga. Pre-master’s thesis, Institut für Mathematische Maschinen und
Datenverarbeitung, Friedrich-Alexander-Universität Erlangen-Nürnberg.

[65] Xerox Research Centre Europe. 1997. RXRC Language Identifier. Online
document: http://www.xrce.xerox.com/research/mltt/Tools/guesser.html .
Xerox Research Centre Europe, Grenoble.

[66] Zierl, Marco. 1997. Entwicklung und Implementierung eines Daten-
banksystems zur Speicherung und Verarbeitung von Textkorpora. Mas-
ter’s thesis, Abteilung für Computerlinguistik, Friedrich-Alexander-
Universität Erlangen-Nürnberg.

71

http://www.sunlabs.com/research/ila/demo/
http://www.xrce.xerox.com/research/mltt/Tools/guesser.html

	Introduction
	The Information Age
	Goals
	The CLUE Framework
	Overview

	Information Systems
	Introduction
	Applications
	Information Retrieval
	Overview
	Implementation Issues

	Information Retrieval and NLP
	Morphology
	Lexicon
	Syntax and Semantics
	Conclusions

	Design and Implementation
	Overview
	Design Decisions
	Preprocessing
	Automatic Language Identification
	Overview
	Design and Implementation
	Performance
	Possible Enhancements

	Indexing
	Morphologic Analysis
	Storage

	Retrieval

	Evaluation
	Introduction
	Evaluation Criteria for IR Systems
	Relevance
	Standard Effectiveness Measures
	Test Collections
	Overview
	Reducing the Need for Human Relevance Judgments
	Conclusions

	Evaluation of 	extsf {IRF/1}{}
	Expected Behavior
	Test Collection
	Measuring Procedures
	Evaluation Results

	Conclusions

